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Abstract

We experimentally study cheap talk by reporters motivated by their reputation for

being well informed. Reputation is assessed by evaluators who see the report and the

realized state of the world. In the laboratory, we manipulate the key drivers of mis-

reporting incentives: uncertainty about the phenomenon to forecast and evaluators'

beliefs. As predicted by theory, reporters are more likely to report truthfully when

the state of the world is more uncertain and when evaluators conjecture that reporters

always report truthfully. However, evaluators have di�culty learning reporters' strate-

gies and tend to overreact to message accuracy, exacerbating reporters' incentives to

misreport.
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1 Introduction

Forecasting is a thriving industry in economics, �nance, and politics. Experts' predictions

of future trends constitute the basis of policy prescriptions, investment decisions, and �rm

management. As a consequence, forecaster accuracy is actively monitored, and forecasters

who attain outstanding reputation face remarkable career prospects. For example, Alan

Greenspan and Lawrence Meyer ran successful consulting �rms o�ering forecasting services

before becoming key members of the Board of Governors of the Federal Reserve Bank.1 In

a di�erent domain, after successfully calling the winner in forty nine U.S. states in the 2008

presidential election, Nate Silver was named one of The World's 100 Most In�uential People

by Time in 2009, he licensed his blog, FiveThirtyEight, for publication in the New York

Times in 2010, and sold it to ESPN in 2013. The existence of such incentives might lead to

believe that reputation motives and market forces ensure performance and truthfulness of

forecasters. As reported by Keane and Runkle (1998): �Since �nancial analysts' livelihoods

depend on the accuracy of their forecasts . . . , we can safely argue that these numbers

accurately measure the analysts' expectations.�

Building on models of career concerns by Holmström (1999) and herding by Scharfstein

and Stein (1990), this belief has been challenged by a large theoretical literature positing that

forecasters are economic agents who make strategic choices and may be reluctant to release

truthful information that could be considered inaccurate. In its basic structure (Ottaviani

and Sørensen 2006a), the strategic situation studied in this literature generates a game of

reputational cheap talk between a reporter and an evaluator. The game proceeds as follows.

The reporter privately observes a signal about a state of the world and reports a message to

the evaluator. The informativeness of the reporter's signal is uncertain and initially unknown

to both the reporter and the evaluator. The evaluator assesses the informativeness of the

reporter's signal on the basis of the reporter's message and the realized state of the world. The

objective of the reporter is to maximize the reputation for being well informed, according

to the assessment made by the evaluator.2 Contrary to naïve intuition, this reputational

incentive does not imply that the reporter always wants to truthfully report the private

signal observed.

Variants of the reputational cheap talk game have been extensively used in the applied

1Alan Greenspan was chairman and president of Townsend-Greenspan & Co., Inc., and Lawrence Meyer
was president of Lawrence H. Meyer and Associates.

2As explained in Section 2, this objective of the reporter can be derived as a reduced form payo� from
a two-period model. While forecasters in the real-world examples above may have additional reasons to
misreport (e.g., a stake in a decision a client takes following the forecaster's advice), the model we bring to
the laboratory assumes away such reasons, thus isolating only the e�ect of reputation.
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theory literature to model the strategic incentives for reputation management in settings

including managerial decision-making (Holmström 1999; Scharfstein and Stein 1990; Prat

2005), recommendations by �nancial analysts (Trueman 1994; Graham 1999; Ottaviani and

Sørensen 2006b), committee communication (Ottaviani and Sørensen 2001; Levy 2007; Visser

and Swank 2007), strategic forecasting (Ehrbeck and Waldmann 1996; Lamont 2002; Otta-

viani and Sørensen 2006a), professional election forecasting (Deb, Pai, and Said, forthcoming)

and news reporting (Gentzkow and Shapiro 2006). This literature has focused on character-

izing when we should expect the reputational concern for accuracy to induce the reporter to

misrepresent the privately received signal. In turn, the evaluator, if aware of this incentive,

should naturally discount the information reported. The lesson is that, in order to interpret

forecasts, it is essential to understand forecasters' incentives.

Testing the predictions of these theories has proven challenging. For example, it is hard

to measure, let alone manipulate, the information available to reporters and evaluators. This

leaves us with many interesting open questions: Do these models accurately predict behavior?

Do reporters misreport available information to appear competent? How does this depend

on uncertainty and evaluators' expectations? Are evaluators able to interpret forecasts or are

they naïve? Our paper addresses these questions with controlled laboratory experiments. In

the laboratory, we are able to measure and exogenously manipulate the information structure,

the degree of uncertainty over the forecasted variable, and the expectations of evaluators.

A challenge for the experimental design is to �nd a simple way to implement the infor-

mation structure posited by the theory. We meet this challenge by developing a novel urn

scheme with nested balls, and use its computerized implementation in our experiment. The

scheme builds on the classic urn paradigm, which has been extensively used in the experi-

mental literature since Anderson and Holt (1997) to test herding models à la Banerjee (1992)

and Bikhchandani, Hirschleifer, and Welch (1992). As in the classic setting, the private sig-

nal observed by the reporter corresponds to the color of a ball drawn from an urn (either

blue or orange). We innovate by introducing a crystal inner core inside the opaque outer

shell of each ball; the color of the core�which is not visible to the reporter�represents the

state of the world (either blue or orange). We then capture the informativeness of the signal

about the state by constructing urns containing a di�erent composition of nested balls: an

informative urn contains balls whose shell and core have the same color; in an uninformative

urn, instead, the color of the shell gives no indication of the color of the core.

The experiment proceeds as follows. A nested ball is drawn from an urn which is either

informative or uninformative; the urn is covered so that neither the reporter nor the evaluator

can observe from which urn the ball is drawn. The reporter privately observes the color of

the shell and reports it (truthfully or not) to the evaluator. In addition to the report, the
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Figure 1: Urns with mildly unbalanced prior: Q = 6 balls have a blue core, giving q = 6/10. The left-hand
panel represents the informative urn (u = I), the right-hand panel the uninformative urn (u = U).

evaluator observes the color of the core and, �nally, assesses the probability that the ball

was drawn from the informative urn. The payo� of the reporter is equal to the evaluator's

assessment and the evaluator's payo� depends on the accuracy of his assessment.

Given our focus on understanding the behavior of reporters, we break down the game into

its constituent components by controlling for strategic behavior and learning on the side of

evaluators. In particular, to study reporters' strategic incentives, we employ eight di�erent

treatments, manipulating two crucial dimensions of the game: the common prior belief on

the state of the world, q, and, with the use of computerized evaluators, the evaluators'

expectations.

We consider two values of q, which in our experiment corresponds to the fraction of

balls with a blue core over the total number of balls in either urn. The values are chosen

to generate di�erent predictions about reporter behavior. Consider our mildly unbalanced

prior of q = 6/10 (Figure 1). The informative urn in this case, is composed of six balls with

a blue core and a blue shell and four balls with an orange core and an orange shell. The

uninformative urn also contains six balls with a blue core and four balls with an orange core;

however, among the six balls with a blue core, only three have a blue shell and, similarly,

among the four balls with an orange core, only two have an orange shell. Notice that

the uninformative urn always contains �ve balls with an orange shell and �ve with a blue

shell. As the prior probability of the blue state of the world increases to generate a strongly

unbalanced prior, q = 8/10 (Figure 2), the number of balls with a blue core increases to eight

in both urns, but the number of balls with a blue shell only increases in the informative urn.

Theoretical predictions about reporters' incentives for truthfully reporting the observed

shell depend on the prior belief q about the state of the world, and on evaluators' beliefs

about the reporter's truthfulness. Hence, to further dissect reporters' strategic incentives,

we vary how we control for evaluators' beliefs through four games: a game with comput-
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Figure 2: Urns with strongly unbalanced prior: Q = 8 balls have a blue core, giving q = 8/10. The
left-hand panel represents the informative urn (u = I), the right-hand panel the uninformative urn (u = U).

erized evaluators programed to believe that all reporters always report truthfully (CT); a

game with computerized evaluators programed to believe that the fraction of reporters who

report truthfully is uniformly distributed (CU); a game with computerized evaluators whose

beliefs are programed to evolve according to Bayesian learning, based on the outcome of past

individual interactions with reporters (CL); and a game with human evaluators who have

free beliefs about reporters' behavior (HF). According to the theory of reputational cheap

talk, the prior belief about the state of the world and evaluators' beliefs about reporter

truthfulness jointly determine which, among two forces driving reporting incentives, should

prevail.

Intuitively, these two forces emerge because the reporter uses the signal to simultaneously

update beliefs about the state of the world and about the informativeness of the signal. To

understand the consequences of the double role of the reporter's signal, suppose that the

prior about the state of the world is unbalanced in favor of blue (as is always the case in

our experiment) and that the evaluator believes that the reporter truthfully reports the

observed shell (as in our CT game). If the evaluator's assessment were formed just on the

basis of the report but without observing the state of the world, the reporter would always

want to report a signal corresponding to the most likely state (blue), so as to improve the

evaluator's assessment that the signal was informative (blue shells are more abundant in the

informative urn only). This �rst force pushes toward misreporting whenever the reporter's

signal corresponds to the least likely state of the world (that is, he observes an orange shell).

But the evaluator's assessment is also based on the realized state of the world (the core). The

second force then comes into play because the reporter's signal always increases the belief

that the state of the world will be equal to the observed signal (that is, the core observed by

the evaluator will have the same color as the observed shell). Since a matching signal and

state of the world are indicative of an informative urn, this second force creates an incentive
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for the reporter to truthfully report the observed signal.

According to the theory, the reporter should choose to be truthful only when the second

force prevails. If the evaluator believes that the reporter is always truthful, the second force

prevails when the reporter, upon observing an orange shell, thinks that the core is more

likely to be orange than blue. This is the case when the prior is mildly unbalanced; then

there exists a separating Bayesian Nash equilibrium in which the reporter truthfully reports

the observed shell and the evaluator believes in the report. If, instead, the prior is strongly

unbalanced, there is only a pooling equilibrium in which the reporter reports a blue shell

even when observing an orange shell and the evaluator disregards the report.

Empirically, we �nd that, as predicted by the theory, reporters are more likely to truth-

fully report contrarian information when they are less certain about the state of the world

and when evaluators always expect them to report truthfully. We also �nd that human eval-

uators appropriately use the information they receive about signal informativeness (report

and core): assessments based on di�erent report and core combinations are ranked in the

order predicted by theory.

However, we �nd human evaluators' behavior to be incompatible with beliefs based on

correct inference or Bayesian learning about reporters' strategies in di�erent environments.

In particular, we �nd that human evaluators incorrectly weigh reporter accuracy�an accu-

rate report predicts the realized state by matching the color of the core�and inaccuracy�an

inaccurate report does not match the state of the world. Accuracy and inaccuracy carry in-

formation about signal informativeness only when reporters are truthful; instead, evaluators'

assessments are more reactive to accuracy and inaccuracy exactly when reporters are pre-

dicted and found to be less truthful (when the prior is strongly unbalanced). This behavior

may re�ect a higher willingness of evaluators to reward accuracy or punish inaccuracy at

a cost, when they detect more misreporting. Alternatively, we show that a learning model

where accuracy is erroneously taken to represent truthfulness and inaccuracy to represent

misreporting also generates the above-mentioned overreaction.

Overall, our experiment suggests that current models of reputational cheap talk correctly

capture reporters' behavior but might be missing important elements in the way evaluators

process the available information or reward reporters for their advice. It also suggests that

making experts' ex-post accuracy (rather than experts' advice) a salient element of the

information available to clients might have negative consequences on forecasters' performance

and the transmission of information.3

3An example of such focus on accuracy is TipRanks (www.tipranks.com), a dataset of analysts, hedge
fund managers, �nancial bloggers, and corporate insiders. The site uses Natural Language Processing algo-
rithms to aggregate and analyze �nancial data online.
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While there is a large experimental literature on the statistical herding models of Banerjee

(1992) and Bikhchandani, Hirschleifer, and Welch (1992),4 this is the �rst paper testing

experimentally the basic building block of the reputational herding model of Scharfstein and

Stein (1990) with a single sender. Other recent experimental papers in this area (Fehrler

and Hughes 2018; Renes and Visser 2018; Mattozzi and Nakaguma 2017) focus on situations

with multiple senders. Fehrler and Hughes (2018) and Mattozzi and Nakaguma (2017)

experimentally examine the role of transparency when career-concerned experts, di�erently

from our setup, are privately informed about the informativeness of their own signal and make

a decision on behalf of the evaluator. In a similar setting, Renes and Visser (2018) consider

the case in which the committee experts care both about their reputation and the quality of

collective decision making. Koch, Morgenstern, and Raab (2009) and Irlenbusch and Sliwka

(2006) conduct experiments based on Holmström's (1999) career concerns model. Contrary

to our experiments, where we manipulate the experts' incentives to misreport, the main

experimental treatment of these works is the information available to the evaluator before

making his assessment.5 With the exception of Fehrler and Hughes (2018) and Renes and

Visser (2018), where experts are allowed to send messages to each other, in these experiments

there is no communication among agents. Thus, di�erently from our work, in none of these

studies do experts send a message to evaluators about the information they possess.6

Our work relates to a broader experimental literature testing models of cheap talk (see

Blume, Lai, and Lim 2017 for a comprehensive review). Di�erently from our setup, in these

experiments, the sender cares about a decision taken by the receiver�rather than about

his reputation�and the key driver of information transmission is the preference alignment

between the sender and the receiver. Our work also relates to the experimental literature on

�naïve advice�, which explores the determinants and consequences of advice transmitted from

senders who have limited information and internalize, at least partially, the receiver's well

being (Schotter 2003; Schotter and Sopher 2007; Chaudhuri, Schotter, and Sopher 2009;

Çelen, Kariv, and Schotter 2010). Finally, this paper relates to the experimental study

of psychological game theory (Geanakoplos, Pearce, and Stacchetti 1989; Battigalli and

4Anderson and Holt (1997) pioneered the investigation of informational cascades in the laboratory. Their
work was extended, among others, by Hung and Plott (2001), Kübler and Weizsäcker (2003), Çelen and Kariv
(2004), Goeree et al. (2007), and Eyster, Rabin, and Weizsäcker (2015). Anderson and Holt (2008) provide
an excellent review.

5Similarly to these laboratory experiments, Meade and Stasavage (2008) and Hansen, McMahon, and
Prat (2017) empirically explore the e�ect of transparency on deliberations within committees composed of
career concerned experts using a natural experiment in the Federal Open Market Committee.

6In some treatments of Renes and Visser (2018), experts can transmit to evaluators a statement about
their con�dence in the committee decision.
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Dufwenberg 2009), since reporter utility depends on evaluator beliefs. In this literature, the

hypothesized e�ect of beliefs on utility is mediated by emotions, which reduces the appeal

of direct belief manipulation via computerized agents (our work) or payo� distributions

(Khalmetski 2016; Ederer and Stremitzer 2017), in favor of the elicitation and communication

of beliefs (Ellingsen et al. 2010), or their indirect manipulation (Dufwenberg and Gneezy

2000; Charness and Dufwenberg 2006).

The paper proceeds as follows: Section 2 introduces the theoretical model and the testable

hypotheses we take to the laboratory. Section 3 describes the experimental design and Section

4 presents the experimental results. Section 5 concludes. Appendix A derives in detail our

testable hypotheses by analyzing theoretically the model; the material presented streamlines

in a self-contained way results that have already appeared in the literature. Appendix B

develops a novel and tractable learning model that combines a generalized Beta distribution

with a noisy Bernoulli outcome; this learning model plays a key role in our experimental

design and analysis, but is also of independent interest. Proofs, supplementary empirical

results, and full experimental instructions are relegated to a Supplementary Appendix.

2 Model and Testable Hypotheses

2.1 Model

We consider a simple Bayesian game of reputational cheap talk between a reporter and an

evaluator. The model has been explicitly designed to capture the key issues from the repu-

tational cheap talk literature, while at the same time keeping it simple enough to investigate

its predictions in the laboratory.

The reporter and the evaluator are uncertain about a state of the world (corresponding

in the experiment to the color of the core of the ball), which can be either blue or orange, c ∈
{b, o}. The common prior belief is weakly unbalanced towards state b, Pr (c = b) = q ≥ 1/2.7

The reporter privately observes a signal about the state (the color of the Shell), which can

be either Blue or Orange, S ∈ {B,O}. There are two types of reporters (urns from which

signals are drawn) u ∈ {I, U}: reporters with u = I receive perfectly informative signals

with conditional distribution

Pr (S = B|c = b, u = I) = 1− Pr (S = B|c = o, u = I) = 1

7Since the model is perfectly symmetric with respect to c, this is without loss of generality.
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and reporters with u = U receive perfectly uninformative signals with

Pr (S = B|c = o, u = U) = Pr (S = B|c = b, u = U) =
1

2
.

The reporter and the evaluator are uncertain about the signal's informativeness and, ex-ante,

believe that both possibilities are equally likely, Pr (u = I) = Pr (u = U) = 1/2.

After observing the signal, the reporter sends a report to the evaluator, R ∈ {B,O}.
The reporter is unable to prove the signal received, so R is a cheap talk message. In the

theoretical analysis as well as in the experiment, we constrain the reporter to report R = B

after observing S = B and we allow misreporting only after observing S = O.8 Thus, the

reporter has two possible strategies:

• Misreporting (M): always report R = B, regardless of the signal.

• Truth-telling (T): report R = B when S = B; report R = O when S = O.

These strategies only di�er when the reporter receives an Orange signal; thus, our theoretical

analysis focuses on this event.

After observing the report R and the state of the world c, the evaluator assesses the

likelihood that the reporter was informed (i.e., that the signal was drawn from the informative

urn): Pr (u = I|R, c) = pRc. The reporter bene�ts from being perceived as informed with

a payo� proportional to this assessment. We assume the reporter to be risk neutral, with

expected utility from either strategy proportional to the expected evaluator's assessment,

E[pRc]. The reporter, who does not know the state of the world when making the report,

perceives the evaluator's assessment as a random variable taking the value pRb, if the state of

the world is b, and pRo, if the state of the world is o. Thus, if the reporter sends R = O, the

evaluator's assessment will be either pOb or pOo; if the reporter sends R = B, the reporter

induces assessments pBb or pBo.

The evaluator's objective is to make an accurate assessment of the reporter's informative-

ness. This assessment depends on the evaluator's belief about the probability the reporter

is truthful, denoted by f . Conditional on this belief f , on the received report R, and on

the observed state c, the evaluator has an incentive to make the most accurate possible

assessment.

The reduced-form payo�s we posit can be derived by appending a second period in which

the same game is played again, following a construction formulated in Holmström (1999) and

8Following observation of S = B, for q ≥ 1/2, there is no belief of the evaluator about the reporter's
strategy for which the reporter �nds it optimal to report R = O. Thus, to simplify the analysis and the
experimental task, we do not allow for this kind of misreporting.
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further developed by Scharfstein and Stein (1990). Before the second period starts, the report

sent in the �rst period and the realized state are publicly observed by at least two evaluators

who compete to hire the reporter. Given that this second period is also the last, the reporter

has no incentives to lie and so can be safely assumed to report truthfully. When hiring a

reporter, each evaluator obtains a decision payo� that increases in the informativeness of the

reporter, because a more informed reporter truthfully sends a more informed report. This

justi�es evaluators in our setting being paid by the accuracy of their assessment. Because of

competition among the evaluators, the reporter is paid the expected value of her information.

This justi�es reporters in our setting being paid their expected future informativeness (the

evaluator's assessment).

2.2 Testable Hypotheses

We now outline the testable hypotheses of the model that our laboratory experiment is

speci�cally designed to investigate. Here we focus on the intuitive logic underlying the

predictions; we present a detailed theoretical derivation in Appendix A.

Reporters' Behavior

HP1 Reporters are more likely to misreport when there is less uncertainty about the state of

the world (that is, when q is larger).

As the fraction of balls with a blue core increases, the fraction of balls with a Blue

shell in the informative urn increases while it remains unchanged in the uninformative

urn (Figures 1 and 2 display such changes in urn composition). Thus, an Orange

shell becomes a stronger indication that the urn is uninformative, giving the reporter

a stronger incentive to misreport.

HP2 Reporters are least likely to misreport when the evaluator believes all reports are truth-

ful, f = 1.

After receiving an Orange report, the evaluator is sure the shell of the ball is Orange,

because reporters are not allowed to misreport after observing a Blue shell. This means

that the evaluator's belief that the reporter is truthful, f , only a�ects pBb and pBo and,

thus, the reporter's expected payo� from misreporting. On one hand, as f increases,

the gain from misreporting when the evaluator observes a blue core, pBb − pOb, in-

creases, because then a Blue report is a stronger indication that the reporter observed

a Blue shell and thus that the urn was informative. On the other hand, as f increases,

the loss from misreporting when the evaluator observes an orange core, pOo − pBo,
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increases, because now a higher belief that the shell was truly Blue more strongly indi-

cates that the urn was uninformative. For the values of q used in our experiment, the

loss from misreporting increases faster in f than the gain, so that the net gain reaches

a minimum at f = 1.

Evaluators' Behavior

HP3 Assessments are ranked: evaluators believe reporters are more likely to be informed after

observing any accurate report than after observing any inaccurate report. If the received

report is one that can only be made by a truthful reporter (that is, R = O), an accurate

report leads to the highest belief that the reporter is informed, and an inaccurate report

leads to the lowest belief that the reporter is informed (that is, pOo ≥ pBb ≥ pBo ≥ pOb).

First, notice that matching shell and core are the strongest indication of a ball coming

from an informative urn. pOo ≥ pBb because a matching orange report and core can only

result if the shell is orange (given that misreporting is precluded when S = B); instead,

matching blue report and core may result from a Blue shell or from a misreported

Orange shell. Next, pBb ≥ pBo because the evaluator is more con�dent that the reporter

is informed if the report accurately predicts the state than if the report does not match

the state. Finally, pOb is the lowest assessment because an Orange report perfectly

reveals an Orange shell, which combined with a blue core results in pOb = 0.

HP4 Assessments after reports that can only be made by a truthful reporter (that is, R =

O), do not depend on evaluators' beliefs about the reporter's strategy (that is, f).

Assessments after reports that can be made by both truthful and misreporting reporters

(that is, R = B), are more sensitive to the report's accuracy when evaluators believe

that reporters are more likely to report truthfully (that is, are further from the 50%

prior when f is larger).

As remarked in the explanation of HP2, an Orange report perfectly reveals an observed

Orange shell, resulting in an assessment independent of f . When the evaluator expects

the reporter to be less likely to misreport (larger f), a Blue report contains more

information about the observed shell, so that the evaluator makes a better inference

about informativeness u. The assessment after a Blue report is thus moved further

away from 1/2, the prior probability that the signal is informative.9

9When f is low, the evaluator is expecting to observe mostly blue reports�a blue report thus carries very
little information, leaving the evaluator's belief about the informativeness of the signal mostly unchanged at
1/2, the prior belief that the signal is informative. A larger f makes a blue report more informative about
the urn and thus spreads both possible assessments following a blue report further away from 1/2.
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3 Experimental Design

The experiments were conducted at Bocconi Experimental Laboratory for the Social Sciences

(BELSS). Subjects' age ranged between 18 and 30 (with an average of 21) and 45.76% of

participants were female. We ran 12 sessions. Subjects participated in only one session

and maintained their role of reporter or evaluator throughout the whole session. Each

session lasted around two hours and the average earnings (including a e5 show-up fee) were

e36.05 for reporters and e39.66 for evaluators. The experiments were programmed using

z-tree (Fischbacher 2007). Full experimental instructions for all treatments are reported in

Supplementary Appendix E.

Information Structure. A �rst challenge in bringing our theoretical model to the labora-

tory is the complex information structure of a reputational cheap talk game. The solution we

adopt is an innovative urn scheme, building on the setup introduced by Anderson and Holt

(1997). At the beginning of each period, a ball is drawn from one of two urns, u ∈ {I, U},
with equal probability.10 Each urn contains 10 nested balls. Each nested ball consists of an

opaque outer shell and of a crystal inner core. The color of the outer shell is either Blue or

Orange, S ∈ {B,O}, and corresponds to the signal privately observed by the reporter. The

color of the inner core is either blue or orange, c ∈ {b, o}, and corresponds to the state of

the world. The number of balls with a blue core is the same in both urns, Q = 10q. The urn

informativeness determines the chance that the color of the shell matches the color of the

core: the informative urn (I) contains only balls whose shell is the same color as the core;

in the uninformative urn (U), instead, the color of the shell is the same as the color of the

core only for half of the balls, and di�ers for the remaining half.

Counting Heuristic. The urn scheme with nested balls makes it possible to carry out

the Bayesian updating discussed in Appendix A through a simple counting heuristic (An-

derson and Holt 1996). To illustrate, consider an example with q = 6/10, that is, Q = 6.

Figure 1 shows the two urns for this case. Suppose the reporter observes an orange shell.

First, the reporter can compute the probability the evaluator observes a blue core. This

is qO = Pr (c = b|S = O) = 3/9 = 1/3, since 3 out of the 9 balls with an orange shell

have a blue core in the two urns combined. Second, the reporter can compute the eval-

uator's expected assessment if she reports R = O. Suppose the evaluator believes the

reporter always reports truthfully: after observing an orange core, the evaluator should

10Whether the ball is drawn from urn I or urn U is determined by the computerized toss of a fair coin.
Similarly, the random selection of a ball from the selected urn is done by the computer.
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assess pOo = Pr (u = I|R = O, c = o) = 4/6 = 2/3 since 4 of the 6 balls with an orange

core and an orange shell are in urn I. When instead the evaluator observes a blue core,

pOb = Pr (u = I|R = O, c = b) = 0, since urn I only contains balls whose shells match the

core. Thus, by reporting truthfully, the reporter obtains (1/3) (0) + (2/3) (2/3) = 4/9.

Reporters' Choices. Reporters submit their reports through the strategy method. Given

the focus of the theory is on the incentives to misreport signal S = O, at the beginning of

each period, reporters choose one of the following two plans of action:

1. If I see a BLUE shell, I will report: �The shell is BLUE�.

If I see an ORANGE shell, I will report: �The shell is ORANGE�.

2. If I see a BLUE shell, I will report: �The shell is BLUE�.

If I see an ORANGE shell, I will report: �The shell is BLUE�.

The �rst plan corresponds to truth-telling and the second plan to misreporting.

Evaluators' Choices. After observing the report and the core, evaluators are asked to

assess the probability that the ball was drawn from the informative urn. We manipulate ex-

perimentally the nature of evaluators, who are human in one treatment and are impersonated

by di�erent computer algorithms in the other treatments.

Experimental Treatments. In the experiment, we exogenously manipulate q and, with

the use of computerized evaluators, f . We consider two values of q: a mildly unbalanced

prior, q = 6/10, and a strongly unbalanced prior, q = 8/10. The urns corresponding to these

two priors are illustrated in Figures 1 and 2, respectively. We employ four di�erent games

varying the experimenters' degree of control on f :

• CT (Computerized Trusting). Evaluators are computerized and believe that all re-

porters always report truthfully: f = 1.

• CU (Computerized Uniform). Evaluators are computerized and believe that the frac-

tion of reporters who report truthfully is uniformly distributed: f ∼ U(0, 1).11

11The theoretical analysis presented in Appendix A, treats f as the probability that the reporter truthfully
report R = O when observing S = O. Here, we treat it alternatively as a characteristic or type of the reporter,
with a distribution over the entire population of reporters. The evaluator faces a sample of this population
during a session and may use it to re�ne his belief about the true population distribution. The evaluators
in CT and CU do not learn.
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Game Sessions Decisions (R-E Pairs) Subjects

q = 6/10 q = 8/10 Reporters Evaluators

HF 4 1,504 1,504 47 47

CT 2 1,504 1,504 47 0

CU 2 1,504 1,504 47 0

CL 4 1,536 1,536 48 0

Table 1: Experimental Design. R-E stands for Reporter-Evaluator.

• CL (Computerized Learning). Evaluators are computerized and initially believe that

f ∼ U(0, 1); the belief then evolves according to Bayes' rule depending on the outcome

of past individual interactions with reporters, resulting in generalized Beta learning.

Details of this novel learning model are given in Appendix B.

• HF (Human Free). Evaluators are humans with free beliefs about reporters' behavior.

In each session, subjects played the same game in all periods�HF, CU or CT (that is,

we used a between-subject design for f), but were confronted with both prior beliefs on the

state�q = 6/10 and q = 8/10 (that is, we used a within-subject design for q). We run

at least two sessions with the same game. Table 1 reports the details of the experimental

design.

Periods and Blocks. Each session consisted of 4 blocks of 16 periods (for a total of 64

periods) to allow learning. Each reporter was randomly rematched with an evaluator at the

beginning of each period. The value of q was �xed during a block but it changed from one

block to the next, so that each value occurred in two non-consecutive blocks. We ran 6

sessions for each of the two orders: in order 6868, we started with q = 6/10; in order 8686

we started with q = 8/10. We use the term �rst block to indicate the block in which a given

value of q was encountered for the �rst time, and second block refers to the block in which

this same q was encountered for the second time.

Payo�s. At the beginning of each block of periods, the reporter received a budget of e4.

In each period, the reporter paid an operating fee of e0.25 and obtained a payo� equal to

eP , where P ∈ [0, 1] represents the evaluator's assessment of the probability that the ball

was drawn from the informative urn�that is, pRc. We compensated human evaluators in HF

using a binarized scoring rule (Harrison, Martínez-Correa, and Swarthout 2013; Hossain and
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Okui 2013).12 Once the scoring rule is binarized, it is optimal (that is, incentive compatible)

for evaluators to truthfully report their personal assessment, even if they are risk averse or

do not have expected utility preferences, provided that they prefer a binary lottery that

assigns a higher probability to the larger reward to one that assigns a lower probability to

the same reward (an exact description of this scoring rule can be found in the experimental

instructions in Supplementary Appendix E).

Feedback. At the end of each period, each reporter received individual feedback about the

outcome of the period that just elapsed. This feedback consisted of: the color of the core

of the ball, the type of urn from which the ball was drawn, and the evaluator's assessment

(that is, the reporter's payo�). Similarly, each human evaluator in HF received the following

feedback at the end of a period: the type of urn from which the ball was drawn and the

evaluator's payo�. We gave this feedback to reporters and evaluators to allow them to gain

experience and learn how to play the game. Given that in each period's play evaluators ob-

served neither the strategy of reporters nor the color of the shell, feedback given to evaluators

was also meant to help them learn the strategy used by reporters.

4 Experimental Results

4.1 Reporters' Behavior

Our experimental treatments are explicitly designed to investigate the e�ect of both q, the

common belief about the state of the world, and f , the evaluator's belief about the reporter's

strategy, on the reporters' incentives to misreport. We can thus use the behavior observed

in our experimental games to test hypotheses HP1 and HP2 from Section 2.2.13 Throughout

the Results section, whenever we state a result is signi�cant, unless otherwise indicated, we

refer to signi�cance at the 1% level.

4.1.1 E�ect of Prior Beliefs on State (q)

Table 2 shows estimates of the e�ect of holding strongly unbalanced (q = 8/10) rather than

weakly unbalanced priors (q = 6/10) about the state of the world on the probability reporters

12To assist evaluators in their assessment, the software provided a slider and computed the payo� for
di�erent provisional assessments that were provided by the subjects.

13For games CT and CU, with exogenous evaluators' beliefs, HP1 is based on Proposition 2. For games HF
and CL, HP1 is based on Proposition 4: the set of equilibria admits both truthful reporting and misreporting
with q = 6/10, while it admits only misreporting when q = 8/10. HP2 is based on Proposition 3. All
propositions are stated in Appendix A.
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Pr[Reporter Chooses Truthful Plan of Action]

(1) (2) (3) (4)

q = 8/10 -0.12 -0.31 -0.09 -0.10

(0.02) (0.02) (0.02) (0.02)

Constant 0.49 0.65 0.44 0.47

(0.05) (0.03) (0.04) (0.04)

Game HF CT CU CL

N 1472 1504 1504 1536

Table 2: The E�ect of Prior Belief on Reporter's Behavior. Random e�ects GLS regressions. Experienced
subjects. Each subject is a panel and periods are times within a panel. Standard errors in parentheses
(clustered at the session level in columns 1 and 4). Results are robust to using random e�ects Probit
regressions or OLS/Probit regressions with subject �xed e�ects.

choose the truthful plan of action. We use random e�ects panel regressions to account

for the fact that each individual makes multiple decisions in a single game. Moreover, we

cluster standard errors at the session level to account for potential interdependencies between

observations that come from random re-matching of subjects between periods in a session

(when the reporters are matched with human evaluators, as in HF, or with computerized

evaluators with strategies evolving over time, as in CL). In this and in the following tables,

we focus on experienced subjects, that is, on decisions belonging to the second block for

each treatment.14 All coe�cients reported in Table 2 have the hypothesized sign and are

signi�cant at the 1% level.

FINDING 1: In all games, reporters are more likely to misreport with strongly

unbalanced priors (q = 8/10) than with mildly unbalanced priors (q = 6/10). This

provides evidence in favor of HP1.

4.1.2 E�ect of Evaluators' Beliefs on Reporters' Strategy (f)

In games CU and CT, we exogenously manipulate evaluators' beliefs about reporters' strate-

gies. Knowing that truth-telling incentives are maximal in treatment CT (HP2) gives a

benchmark for comparison also for treatments CL and HF, where we do not control beliefs.

We can thus test how reporters respond to the change in incentives due to a shock to their

opponents' strategies by comparing reporter behavior across games. Table 3 shows estimates

of the e�ect of the game on the probability the reporter chooses the truthful plan of action,

14Our �ndings are unchanged if we use all decisions. We discuss the e�ect of experience in Section 4.3
and we present summary statistics for �rst-block decisions in Supplementary Appendix D.
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Pr[Reporter Chooses Truthful Plan of Action]

(1) (2) (3) (4) (5) (6) (7) (8)

CT 0.21 0.19 0.17 -0.01 -0.02 -0.03

(0.06) (0.06) (0.07) (0.06) (0.06) (0.07)

CU -0.21 -0.02 -0.04 0.01 -0.02 -0.02

(0.06) (0.06) (0.07) (0.06) (0.06) (0.07)

CL -0.19 0.02 -0.02 0.02 0.02 -0.01

(0.06) (0.06) (0.06) (0.06) (0.06) (0.06)

HF -0.17 0.04 0.02 0.03 0.02 0.00

(0.07) (0.07) (0.06) (0.07) (0.07) (0.06)

Constant 0.65 0.44 0.47 0.49 0.34 0.35 0.36 0.37

(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

Baseline CT CU CL HF CT CU CL HF

q 0.6 0.6 0.6 0.6 0.8 0.8 0.8 0.8

N 3008 3008 3008 3008 3008 3008 3008 3008

Table 3: The E�ect of Evaluators' Beliefs on Reporter's Behavior. Random e�ects GLS regressions.
Experienced subjects. Each subject is a panel and periods are times within a panel. Standard errors in
parentheses.

keeping prior beliefs about the state of the world constant. Columns (1)�(4) report estimates

for q = 6/10, while columns (5)�(8) report estimates for q = 8/10.

FINDING 2: With mildly unbalanced priors (q = 6/10), reporters are less likely

to misreport when evaluators believe they report truthfully (f = 1, i.e., in game

CT). This provides evidence in favor of HP2.

Column (1) in Table 3 shows that, with q = 6/10, there is signi�cantly less misreporting

in CT than in HF, CL, and CU. This provides evidence in favor of HP2. Column (5) in the

same table shows that, with q = 8/10, there is no evidence of di�erential behavior between

CT and the other games. This is not in line with predictions but the theory does predict a

smaller e�ect for q = 8/10. For example, consider CU and CT�the two treatments where

we exogenously manipulate f and the comparison is, thus, sharper. The di�erence in the

expected gain from misreporting in a single period of the two games is e0.21 with q = 6/10

but only e0.10 with q = 8/10. The other columns in Table 3 show that we do not �nd any

other signi�cant di�erence between reporters' behavior in any other pair of games for any q.
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N Average Median Theory

Blue Report, Blue Core 383 54.4 54.5 [50, 66.7]

Blue Report, Orange Core 194 35.4 40.0 [0, 50]

Orange Report, Blue Core 54 15.2 0.1 0

Orange Report, Orange Core 105 58.6 65.0 66.7

Table 4: Human Evaluators' Assessments, q = 6/10. Game HF, experienced subjects.

N Average Median Theory

Blue Report, Blue Core 522 56.4 55.0 [50, 66.7]

Blue Report, Orange Core 117 30.2 30.0 [0, 50]

Orange Report, Blue Core 59 16.8 1.0 0

Orange Report, Orange Core 38 58.7 66.2 66.7

Table 5: Human Evaluators' Assessments, q = 8/10. Game HF, experienced subjects.

4.2 Human Evaluators' Behavior

We study evaluators' behavior in game HF, the only one with human evaluators. Given the

incentives of human evaluators, we expect them to truthfully reveal their best assessment

about the probability that the drawn ball in any period came from the informative urn.

With this in mind, evaluators' assessments should be a�ected only by three variables: the

received report, the observed color of the core of the ball, and the belief about reporters'

truthfulness, f . While we do not exogenously set any of these variables, we can exploit the

variation in the realization of reports and states of the world, as well as the indirect e�ect

of the common prior, q, on evaluators' beliefs, f , for our hypotheses tests. We thus use

behavior observed in game HF to test hypotheses HP3 and HP4 from Section 2.2.15

4.2.1 E�ect of Observing Di�erent Reports and Cores

Tables 4 and 5 show summary statistics for human evaluators' assessments of the probability

the urn is informative. Each row is for a di�erent pair of observed report and observed core.

15Both HP3 and HP4 are based on Lemma 1. Our use of q as a proxy for f when we test HP4, is partly
based on Proposition 4 and on the empirical �ndings on reporters' behavior discussed in Section 4.1.1. All
formal theoretical results are in Appendix A.

17



Table 4 focuses on the treatment with mildly unbalanced prior (q = 6/10), while Table 5

focuses on the treatment with strongly unbalanced prior (q = 8/10).

FINDING 3: Evaluators' assessments are strictly ranked: pOo > pBb > pBo >

pOb. This provides evidence in support of HP3. Moreover, following an Orange

report, assessments in the experiment are indistinguishable from assessments by

a Bayesian evaluator, pOo = 2/3 and pOb = 0.

We compare the whole distribution of assessments following each report and core pair with

Kolmogorov-Smirnov and Wilcoxon-Mann-Whitney tests. For both q = 6/10 and q = 8/10,

evaluators are most con�dent that the signal is informative (that is, that the reporter is

well informed) when they observe an orange report and an orange core and least con�dent

when they observe an orange report and a blue core. Observing a blue report and a blue

core makes evaluators more con�dent than observing any inaccurate report and observing a

blue report and an orange core makes them more con�dent than observing an orange report

and a blue core and less con�dent than observing any accurate report. All di�erences are

statistically signi�cant at the 1% level.16 This evidence supports hypothesis HP3.

The median assessment following an orange report and an orange core (65.0 for q = 6/10

and 66.2 for q = 8/10) and the median assessment following an orange report and a blue

core (0.1 with q = 6/10 and 1.0 with q = 8/10) are indistinguishable from the assessments

made by a Bayesian evaluator (respectively, 66.6 and 0). Note that the assessments of a

Bayesian evaluator following an orange report do not depend on beliefs about the reporters'

strategy. On the other hand, the assessments of a Bayesian evaluator following a blue report

do depend on these beliefs. The average and median assessments after a blue report given by

our human evaluators are consistent with some belief f ∈ [0, 1]. We explore this in further

detail in Sections 4.2.2 and 4.2.3 below.

4.2.2 E�ect of Prior Beliefs on the State (q)

Table 6 shows estimates of the e�ect of holding strongly unbalanced (q = 8/10) rather than

weakly unbalanced priors (q = 6/10) about the state of the world on human evaluators'

assessments of the probability the urn is informative. Each column focuses on a di�erent

report and core pair. From the perspective of evaluators who are trying to assess the infor-

mativeness of the urn, the only possible di�erence between the two treatments lies in the

strategy adopted by reporters: both theoretically and empirically, reporters are less likely

16The only exception is the di�erence between assessments following a blue report and a blue core and
assessments following an orange report and an orange core with q = 8/10: the p-value of the Kolmogorov-
Smirnov test is 0.001 but the p-value of the Wilcoxon-Mann-Whitney test is 0.918.
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(1) (2) (3) (4)

Dependent Variable: Evaluator's Assessment

q = 8/10 1.87 -4.34 1.52 -0.62

(0.65) (1.42) (1.66) (2.28)

Constant 54.99 34.46 15.53 59.20

(1.69) (1.89) (3.13) (2.40)

Report Blue Blue Orange Orange

Core Blue Orange Blue Orange

N 905 311 113 143

Table 6: Human Evaluators' Assessments as a Function of q. Random e�ects GLS regressions. Experienced
subjects. Each subject is a panel and periods are times within a panel. Standard errors clustered at the
session level in parentheses.

to report their signal truthfully with q = 8/10 than with q = 6/10. A Bayesian evaluator

who is aware of this di�erential behavior should give assessments that are further from the

50% prior (in the sense of rewarding to a larger extent an accurate report and punishing to

a larger extent an inaccurate report) with q = 6/10 than with q = 8/10. At the same time,

any di�erence in evaluators' beliefs about the strategy adopted by reporters with q = 8/10

and with q = 6/10 should not a�ect assessments following an orange report.

FINDING 4: Evaluators' assessments after orange reports do not depend on q.

This is in line with HP4. Assessments after blue reports are further from the

prior with q = 8/10 than with q = 6/10. This is in line with HP4 only if evaluators

(incorrectly) believe reporters are more likely to misreport with q = 6/10.

Columns (3) and (4) in Table 6 show that evaluators' assessments following an orange

report are not signi�cantly a�ected by the prior belief about the state of the world. On the

other hand, the assessed likelihood that the urn is informative is signi�cantly larger with

q = 8/10 after seeing an accurate blue report and signi�cantly lower with q = 8/10 after

seeing an inaccurate blue report. This suggests that human evaluators are more sensitive to

information with q = 8/10 than with q = 6/10. This can be rationalized by a belief reporters

are more likely to report their signal truthfully with q = 8/10 than with q = 6/10. Indeed,

this is con�rmed by the structural estimation of human evaluators' beliefs about reporters'

strategies reported in Table 7. For each human evaluator, the estimated f is found as the

minimizer of the sum of the squared distances from the Bayesian posteriors for all assessments

this subject makes following a blue report in a given treatment. Each evaluator makes 16
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N Average 1st Quartile 2nd Quartile 3rd Quartile Theory

q = 6/10 47 0.43 0 0.50 0.80 [0,1]

q = 8/10 47 0.51 0.15 0.65 0.85 0

Table 7: Human Evaluators' Estimated f . Experienced subjects. Game HF.

assessments in each treatment (we consider only experienced evaluators�second block of 16

periods). The median estimated probability that reporters are truthful is 50% with q = 6/10

and 65% with q = 8/10. Evaluators' estimated beliefs are positively and signi�cantly a�ected

by the treatment according to a Tobit (p-value 0.004) or linear (p-value 0.037) regression

with subjects �xed e�ects. As discussed in Section 4.1.1 and Finding 1, this perception is

not in line with reporters' actual behavior in game HF.

4.2.3 Explanation for Discrepancy: Learning Model of Evaluators' Behavior

To shed light on the origins of this discrepancy, we investigate whether human evaluators'

assessments are consistent with the learning model we endowed computerized evaluators

with in game CL. As described in more detail in Appendix B, this learning model has the

following elements:

• The �true� fraction f of reporters that report truthfully is unknown but constant.

• The starting point of beliefs is the uniform distribution, f ∼ U(0, 1).

• Evaluators learn from each interaction with a reporter. At the end of a period, the

belief is updated based on the information available to human evaluators in game HF:

� the received report, R ∈ {B,O},

� the observed core, c ∈ {b, o},

� the true informativeness of the signal, u ∈ {I, U}.

This information is easily summarized as a triple, (R, c, u), taking on eight distinct values.

One of these triples, (O, b, I), cannot occur, while the remaining seven can be grouped into

four events considered to be positive, negative, neutral, or muddy signals about the reporters'

truthfulness. A negative signal tells the evaluator that the reporter he met this period

misreported for sure; a positive signal tells him that the reporter was truthful for sure; a
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Event Triples � (R, c, u) Likelihood

Positive

(O, o, I)

(O, o, U)

(O, b, U)

3−2q
4
f

Negative (B, o, I) 1−q
2

(1− f)

Muddy
(B, o, U)

(B, b, U)
1
4

(2− f)

Neutral (B, b, I) q
2

Table 8: Events and likelihoods used for evaluators' updating in the Bayesian learning model.

neutral signal bears no information; a muddy signal assigns positive but distinct likelihood to

both truth-telling and misreporting. Table 8 summarizes these events and their likelihoods

given a prior belief, f , about the reporters' truthfulness. Proposition 5 in Appendix B

characterizes the distribution of an evaluator's beliefs over f as a function of the number of

negative, positive and muddy signals observed thus far. In the same Appendix, Proposition

6 characterizes the expected assessments given by an evaluator who receives a Blue report

and observes either an orange or a blue core as a function of his experience.

Table 9 reports summary statistics for assessments given by computerized evaluators who

update their beliefs on f as described above and have the same experience as human evalu-

ators in game HF. Table 10 reports estimates on the e�ect of holding strongly unbalanced

rather than weakly unbalanced priors about the state of the world on these computerized

evaluators' assessments of the probability the urn is informative. Assessments following an

accurate blue report are signi�cantly less generous and assessments following an inaccurate

blue report are signi�cantly less punitive with q = 8/10 than with q = 6/10. This is in line

with computerized evaluators believing (correctly) that human reporters are more likely to

misreport with q = 8/10 than with q = 6/10.

FINDING 5: The behavior of human evaluators is not consistent with a learning

model which posits they initially believe f ∼ U(0, 1) and update beliefs according

to Bayes' rule based on the evolution of the interaction with reporters.

Another possibility is that evaluators have limited attention and do not use all the infor-

mation available to them but focus on a salient piece of information, that is, whether reports

were accurate or inaccurate (that is, on whether they matched or not the core). If this is the

case, evaluators might naïvely infer reporters' strategies from report accuracy. In particular,

we modify our learning model and assume that evaluators take any accurate report as a

positive signal (that is, a signal that the reporter he met this period was truthful for sure)
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N Average Median Theory

q = 6/10

Blue Report, Blue Core 383 57.3 57.2 [50, 66.7]

Blue Report, Orange Core 194 37.2 38.2 [0, 50]

q = 8/10

Blue Report, Blue Core 522 56.1 55.6 [50, 66.7]

Blue Report, Orange Core 117 38.0 39.1 [0, 50]

Table 9: Hypothetical assessments made by computerized evaluators who initially believe f ∼ U(0, 1), learn
Bayesianly depending on interactions, and have the same experience as humans in game HF.

(1) (2)

Dependent Variable: Computer Assessment

q = 8/10 -1.34 3.30

(0.13) (0.57)

Constant 57.39 37.21

(0.26) (0.61)

Report Blue Blue

Core Blue Orange

N 905 311

Table 10: Random e�ects GLS regressions. Experienced `Bayesian' computers. Each computer is a panel
and periods are times within a panel. Standard error in parentheses.

and an inaccurate report as a negative signal (that is a signal that the reporter he met this

period misreported for sure).

Table 11 reports summary statistics for assessments given by `naïve' or `behavioral' com-

puterized evaluators who update their beliefs on f as described above and have the same

experience as human evaluators in game HF. Table 12 reports estimates on the e�ect of

holding strongly unbalanced rather than weakly unbalanced priors about the state of the

world on these computerized evaluators' assessments of the probability the urn is informa-

tive. As is the case for human evaluators, assessments following an accurate blue report are

signi�cantly more generous and assessments following an inaccurate blue report are signi�-

cantly more punitive with q = 8/10 than with q = 6/10. This is in line with computerized
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N Average Median Theory

q = 6/10

Blue Report, Blue Core 383 59.8 59.6 [50, 66.7]

Blue Report, Orange Core 194 33.2 33.9 [0, 50]

q = 8/10

Blue Report, Blue Core 522 61.6 61.6 [50, 66.7]

Blue Report, Orange Core 117 27.7 29.3 [0, 50]

Table 11: Hypothetical assessments made by computerized evaluators who initially believe f ∼ U(0, 1),
learn `behaviorally' depending on interactions, and have the same experience as humans in game HF.

(1) (2)

Dependent Variable: Computer Assessment

q = 8/10 1.80 -5.59

(0.09) (0.54)

Constant 59.72 32.72

(0.19) (0.61)

Report Blue Blue

Core Blue Orange

N 905 311

Table 12: Random e�ects GLS regressions. Experienced `behavioral' computers. Each computer is a panel
and periods are times within a panel. Standard error in parentheses.

evaluators believing (incorrectly, and similarly to human evaluators) that human reporters

are less likely to misreport with q = 8/10 than with q = 6/10.

FINDING 6: The behavior of human evaluators is consistent with a learning

model which posits they initially believe f ∼ U(0, 1) and learn depending on

interactions with reporters but mistakenly consider report accuracy (inaccuracy)

as a perfect signal of truthful reporting (misreporting).
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4.3 E�ect of Experience

The game faced by our experimental subjects is complicated and it might require some time

for subjects to understand the underlying incentives. This is the reason why we focused the

analyses on experienced subjects, as is customary in experimental economics. To explore

the possibility that behavior adapted to accumulated experience, we compare reporters' and

evaluators' behavior in the �rst block of each treatment (decisions 1�16), when subjects

were relatively inexperienced, to the second block (decisions 17�32), after subjects had been

exposed to feedback and a chance to learn. Table 13 reports estimates of the e�ect of

experience on reporters' behavior as a function of the game and the treatment. Table 14

reports estimates of the e�ect of experience on human evaluators' behavior as a function of

the treatment and the observed report-core pair.

Pr[Reporter Chooses Truthful Plan of Action]

(1) (2) (3) (4) (5) (6) (7) (8)

2nd Block −0.04 −0.07 0.07 −0.09 −0.08 −0.03 −0.07 −0.05

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Game HF HF CT CT CU CU CL CL

q 0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.8

N 1488 1481 1504 1504 1504 1504 1536 1536

Table 13: Random e�ects GLS regressions. Each subject is a panel and periods are times within a panel.
Standard errors in parentheses. Constant is omitted.

Human Evaluator's Assessment

(1) (2) (3) (4) (5) (6) (7) (8)

2nd Block 0.04 4.86 -2.14 -0.62 -0.66 -3.13 -5.80 1.67

(1.00) (1.36) (2.68) (1.94) (0.70) (2.19) (2.89) (5.02)

Report Blue Blue Orange Orange Blue Blue Orange Orange

Core Blue Orange Blue Orange Blue Orange Blue Orange

q 0.6 0.6 0.6 0.6 0.8 0.8 0.8 0.8

N 768 390 114 216 1058 230 115 78

Table 14: Random e�ects GLS regressions. Game HF. Each subject is a panel and periods are times within
a panel. Standard errors in parentheses. Constant is omitted.

FINDING 7: Except when reporting truthfully is a best response to computer-

ized evaluators' beliefs (game CT with q = 6/10), experienced reporters are more
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likely to misreport than inexperienced reporters. Human evaluators' assessments

are mostly una�ected by experience.

With the exception of CT with q = 6/10 (where there is signi�cantly less misreporting

with experience) and of CU with q = 8/10 (where the e�ect of experience is negligible),

experienced reporters are signi�cantly less likely to report truthfully than inexperienced

reporters (signi�cance at the 1% level, except for HF with q = 6/10 and CL with q = 8/10,

which are signi�cant at, respectively, the 10% and the 5% level). Notice that in game

CT with q = 6/10 reporting truthfully is the best response to the beliefs of computerized

evaluators so experience leads reporters to make better choices, as is the case for HF with

q = 8/10 and CT with q = 8/10. Regarding CU with q = 6/10, learning is away from

the best response: experienced reporters are more likely to misreport than inexperienced

reporters but misreporting gives a lower EU than truth-telling. At the same time, we must

note that the di�erences in EU between misreporting and reporting is minimal: e0.01 in

each period.

The behavior of evaluators is only marginally a�ected by experience: experienced evalu-

ators punish signi�cantly less severely an inaccurate blue report with q = 6/10 (possibly as

a consequence of increased misreporting by experienced reporters, which dampens the eval-

uators' ability to infer the informativeness of the urn) and punish more severely (signi�cant

at the 5% level) an inaccurate orange report (in the direction of what a Bayesian evaluator

would do).

5 Conclusion

This paper presents a laboratory experiment designed to test a widely applied model of rep-

utational cheap talk where a reporter wants to convince an evaluator of being well informed.

A �rst innovation in the design consists in the introduction of nested crystal balls, where

the color of the inner core corresponds to the realization of the state while the color of the

outer shell corresponds to the noisy signal. A second, and more methodological, innovation

in the experimental design consists in controlling for strategic behavior and learning on the

side of the evaluator in a number of intermediate experiments in which we computerize

the evaluators by programming them to best reply to expectations about the reporter's

behavior. In treatments CT and CU these beliefs are �xed throughout the experiment,

while, in treatment CL, computerized evaluators' expectations are updated according to

a generalized Beta learning model that we characterize in Appendix D. We analyze the

outcomes of these experiments and use them as baselines to study play in the full game

where also evaluators are human subjects with unrestricted beliefs.
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Within the context and the sample of our experiment, we provide answers to the open

questions about models of reputational cheap talk that motivated our study: Do these models

accurately predict behavior? Do reporters misreport available information to appear compe-

tent? How does this depend on uncertainty and evaluators' expectations? Are evaluators able

to interpret forecasts or are they naïve?

Empirically, we �nd that reporters realize how their strategic incentives are a�ected by

the uncertainty about the phenomenon they are asked to forecast (q) and by the evaluators'

expectations (f) and learn to best reply even when confronted with the noisy behavior of

human evaluators. On the other side of the game, human evaluators �nd it di�cult to assess

the quality of the information available to reporters and to learn how the strategies used by

reporters change in di�erent environments. The noisier evaluation that results from human

evaluators, in turn, exacerbates the reporters' incentives for misreporting. Overall, our

experiment suggests that current models of reputational cheap talk are accurate in modeling

reporters' behavior but might be missing important elements in the way evaluators process

the available information or reward reporters for their advice.
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Appendix A: Theoretical Analysis

Here we derive the theoretical foundations for the hypotheses stated in Section 2.2. We ini-

tially focus on the individual perspectives of evaluator and reporter, then obtain comparative

statics predictions, and �nally characterize the equilibria depending on the parameters. All

proofs are relegated to the Supplementary Appendix C.

A.1 Evaluator's Assessments

Consider the evaluator, who acts as receiver in this sequential game of strategic communi-

cation. As long as the evaluator believes there is a positive chance the reporter is truthful,

the evaluator learns from observing the report and the state of the world: if the report

accurately predicts the state of the world, the evaluator should become more con�dent that

the reporter is informed; instead, a report that does not match the state indicates that the

reporter is uninformed. When the evaluator believes that the reporter is more likely to be

truthful, the observed combination of R and c is more informative, resulting in a posterior

further away from the balanced prior about informativeness.

Given report R, state of the world c, and belief f , the evaluator's assessment can be

determined through Bayesian updating as

pRc = Pr (u = I|R, c, f) =
1
2

Pr (R|c, u = I, f)
1
2

[Pr (R|c, u = I, f) + Pr (R|c, u = U, f)]
. (1)

Assessments pOo and pOb follow an Orange report, R = O, which can only occur when

S = O, given that we do not allow the reporter to misreport R = O when S = B. Therefore,

in this case, deducing the signals informativeness from the report and the state is equivalent

to deducing it from the signal and the state, Pr (u = I|R = O, c, f) = Pr (u = I|S = O, c),

regardless of the held belief about the reporter's truthfulness, f . An Orange report followed

by the observation of a blue state implies a mismatch of signal and state. Since an informative

signal is never di�erent from the state, we have pOb = 0. On the other hand, observing an

orange state implies that the signal matches the state. Since an informative signal is twice

as likely to coincide with the state than an uninformative signal, and both signal types are

ex-ante equally likely, pOo = 2/3.

Turning to assessments pBo and pBb following a Blue report, R = B, the evaluator should

take into account that the reporter might have misreported Blue after observing an Orange

signal, S = O. The evaluator's assessments after a Blue report thus crucially depend on the

likelihood that the reporter is truthful, f . A belief that the reporter may misreport, 1−f > 0,
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should therefore dampen the evaluator's favorable inference about informativeness following

a match between report and state, pBb, as well as the unfavorable inference following a

mismatch, pBo. According to (1),

pBb =
1

3
2

+ (1− f)1
2

and pBo =
(1− f)

1
2

+ (1− f)3
2

.

Intuitively, when the reporter is believed to always misreport, f = 0, the posterior assess-

ments must be equal to the prior, pBb = pBo = 1/2. The evaluator's assessments based on

comparing the match between the state and the report are most extreme and informative

when the reporter is always truthful, f = 1. Assessment pBb ∈ [1/2, 2/3] is convex and

strictly increasing in f ; pBo ∈ [0, 1/2] is concave and strictly decreasing in f . Given that the

quality of the signal is independent of the prior probability of the blue state, q, notice also

that the evaluator's assessment is independent of q.

Lemma 1. The evaluator's assessments are weakly ranked: pOo ≥ pBb ≥ pBo ≥ pOb for

any f ∈ [0, 1]. If f ∈ (0, 1), this ranking is strict: pOo > pBb > pBo > pOb. If f = 1,

pOo > pBb = pBo > pOb. If f = 0, pOo = pBb > pBo = pOb.

A.2 Reporter's Expected Utility and Best Reply

The probabilities of the two possible assessments, pRb or pRo, following each report, R, are

given by the reporter's posterior belief about the state of the world after observing signal

S = O,

qO ≡ Pr (c = b|S = O) = Pr(S=O|c=b)q
Pr(S=O|c=b)q+Pr(S=O|c=o)(1−q) =

( 1
4)q

( 1
4)q+( 3

4)(1−q)
. (2)

Note that qO ∈ [1/4, 1] is convex and strictly increasing in the prior belief, q. Thus, the

reporter's expected utility when misreporting and sending R = B is

EU(M) = (1− qO) pBo + qOpBb =
(

3
4

(1−q)
1
4
q+ 3

4
(1−q)

)(
(1−f)

1
2

+(1−f) 3
2

)
+
(

1
4
q

1
4
q+ 3

4
(1−q)

)(
1

3
2

+(1−f) 1
2

)
.

Similarly, truthfully reporting R = O gives expected utility

EU(T ) = (1− qO) pOo + qOpOb =
(

3
4

(1−q)
1
4
q+ 3

4
(1−q)

) 2

3
+
(

1
4
q

1
4
q+ 3

4
(1−q)

)
0.

Hence, the expected gain from misreporting rather than truth-telling after observing an

Orange signal, is a function of the prior belief on the state, q, and of the evaluator's belief

that the reporter is truthful, f :
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Figure 3: Reporter's expected utility from from Misreporting or Truth-telling after observing signal S = O,
for a mildly unbalanced prior, q = 6/10, and a strongly unbalanced prior, q = 8/10. EU(T ) is equal for
all values of f while EU(M) varies with f . Three values of f are represented with the solid (f = 1), the
dot-dashed (f = 2/3), and the dashed (f = 0) lines.

∆EU (q, f) = EU(M)− EU(T ) =
3
4

(1−q)
1
4
q+ 3

4
(1−q)

(
(1−f)

1
2

+(1−f) 3
2

− 2

3

)
+

1
4
q

1
4
q+ 3

4
(1−q)

(
1

3
2

+(1−f) 1
2

)
. (3)

Since strategiesM and T are identical when the observed signal is B, the reporter's choice

is only a�ected by the expected gain from misreporting rather than reporting truthfully

when the signal is O, weighted by the probability of this signal: Pr (S = O) ∆EU(q, f). The

reporter is strictly better o� misreporting if and only if ∆EU(q, f) is strictly positive.

Proposition 1 (Reporter's Best Reply to Exogenous Beliefs). Consider an evaluator whose

exogenous belief about the reporters' strategy is a random variable drawn from the distribution

G(f) with density g(f). The reporter strictly prefers to misreport rather than to report

truthfully if and only if
∫ 1

0
∆EU(q, f)g(f)df > 0. If G(f) is a degenerate distribution, the

reporter strictly prefers to misreport rather than to report truthfully if and only if q > 4−f
4(2−f)

.

Figure 3 illustrates the interaction between the reporter's posterior belief, qO, and the

evaluator's assessments, pRc, in the reporter's expected utility (equation (3)), and provides
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the intuition for Proposition 1. Consider the extreme case of a perfectly trusting evaluator,

who is certain that f = 1. In Figure 3, the downward-sloping solid line represents the

reporter's expected utility from a truthful report when her signal is O, EU(T ), as a function

of her posterior belief, qO, when the evaluator is perfectly trusting. This line crosses the

vertical axis at 2/3, since when qO = 0, EU(T ) = pOo = 2/3 and for qO = 1 we have

EU(T ) = pOb = 0. The upward-sloping solid line represents the reporter's expected utility

from misreporting when her signal is O, EU(M), as a function of her posterior belief, qO.

It crosses the vertical axis at 0, since when the evaluator is perfectly trusting and qO = 0,

EU(M) = pBo = 0 and for qO = 1 we have EU(M) = pBb = 2/3. The two solid lines cross

when the reporter's posterior belief about the state is qO = 1/2. Therefore, the reporter

maximizes her expected utility by truth-telling (resp. misreporting) as long as the posterior

probability she assigns to state b is smaller (resp. larger) than 1/2. From equation (2) we

know that a posterior belief qO = 1/2 corresponds to a prior belief of q = 3/4. Application

of Proposition 1 to the case of a trusting evaluator (f = 1), yields the same conclusion: the

reporter prefers to misreport rather than to report truthfully if and only if q > 3/4.

In Figure 3 we determine the reporter's best reply for the values of q used in our exper-

iment: a mildly unbalanced prior belief of q = 6/10 < 3/4, and a strongly unbalanced prior

belief of q = 8/10 > 3/4. When the prior is mildly unbalanced, the posterior belief that the

state is b is qO = 1/3 < 1/2 and the reporter's expected gain from misreporting conditional

on seeing signal O is ∆EU (6/10, 1) = −2/9 < 0 (unconditionally, taking into account the

probability that the signal is S = O, the expected gain is −1/10), so the reporter is better

o� Truth-telling. When the prior is strongly unbalanced, the reporter's posterior belief af-

ter observing signal O equals qO = 4/7 > 1/2, and her conditional gain from misreporting

instead of truth-telling is ∆EU(8/10, 1) = 2/21 > 0 (unconditionally, 1/30), so the reporter

prefers Misreporting.

Lighter, dashed lines in Figure 3 illustrate the role of the evaluator's belief, f . The

expected utility from truth-telling when the signal is S = O, EU(T ), is clearly una�ected by

f (only a truthful reporter reports R = O). Thus this expected utility is always represented

by the same, downward-sloping, solid line. The expected utility from misreporting, EU(M),

changes as f changes. The larger the value of f , the larger the slope of the relation between

expected utility and posterior belief. This is so because when the evaluator is more trusting, a

blue report is more informative, and the di�erence between pBb and pBo is larger. Therefore, a

change in the relative probabilities of these payo�s, qO, has a stronger e�ect on the reporter's

expected utility when the evaluator is more trusting.

In the extreme case where the evaluator is perfectly skeptical (certain that f = 0), a blue

report carries no information, so the evaluator maintains her prior belief about the signal
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informativeness regardless of the report. Thus pBb = pBo = 1/2, and the reporter's posterior

belief is irrelevant for her expected utility from misreporting. This case is represented by

the �at dashed line with intercept 1/2. As long as qO > 1/4, this �at line lies above the

expected utility from truth-telling, EU(T ) and, thus, the reporter prefers to misreport.

Since q ≥ 1/2 ⇒ qO ≥ 1/4, when the evaluator is perfectly skeptical, the reporter is

always better o� by misreporting (recall our assumption that q > 1/2). If the evaluator

holds other, intermediate, degenerate beliefs about the reporter's truthfulness, f ∈ (0, 1),

the line representing the reporter's expected utility from misreporting as a function of her

posterior belief, has a slope between those of the perfectly trusting and perfectly skeptical

cases considered so far. An example of such an f is given by the dot-dashed line in Figure

3: it represents EU(M) when the evaluator believes f = 2/3 for sure.

The examples in Figure 3 were limited to evaluators with degenerate beliefs. We allow

evaluators to hold distributional beliefs, for example because they are unsure about the

reporter's behavior or they learn from experience. An example of such distributional beliefs,

that corresponds to game CU in our experiment, is that of an agnostic evaluator who believes

f is equally likely to take on any value on the interval [0, 1], f ∼ U [0, 1]. Applying Proposition

1, we obtain that when faced with an agnostic evaluator, the reporter strictly prefers to

misreport rather than to report truthfully if and only if q > 2 ln(4)
8 ln(4)−6 ln(3)

≈ 0.6163.

A.3 Comparative Statics for Reporter's Incentive to Misreport

Equation (3) highlights the two main drivers of reporters' behavior in this simple game

of reputational cheap talk: the common prior belief on the state of the world, q, and the

evaluator's belief on the reporter's strategy, f . In this section, we analyze how each factor

a�ects the reporter's propensity to misreport. While q is an exogenous variable which can

vary in di�erent environments, f is an endogenous variable and is determined in equilibrium.

We derive the equilibrium f as a function of q in Section A.4. In this Section, we investigate

how the reporter's best reply changes with an exogenous change to f . This is instructive

of the reporter's incentive and directly relates to experimental treatments where we employ

computerized evaluators to exogenously manipulate f .

Proposition 2 (Comparative Statics with respect to q). The reporter's incentive to misre-

port, i.e., the expected gain from misreporting with respect to reporting truthfully, is strictly

increasing in q for any f ∈ [0, 1] and, thus, also for probabilistic evaluator's beliefs.

Intuitively, when the reporter is more con�dent that the state of the world is b, she is

more con�dent that a report R = B will match the state and that a report R = O will not,

regardless of the signal she receives. If she misreports, the evaluator is more likely to assess
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pBb and less likely to assess pBo. Since pBb ≥ pBo for any f ∈ [0, 1], this weakly increases

her expected utility from misreporting. If she reports truthfully, the evaluator is more likely

to assess pOb and less likely to assess pOo. Since pOo > pOb for any f ∈ [0, 1], this strictly

decreases her expected utility from reporting truthfully.

The e�ect of f on the reporter's expected gain from misreporting is ambiguous. While

the gain that accrues if the state is o decreases with f , the gain that accrues if the state is

b increases with f . Depending on q and on the evaluator's initial belief, increased trust (an

increase in f) may either lower or increase the reporter's incentives to misreport. Nonetheless,

for both values of q used in our experimental setup, incentives to misreport are lowest when

the evaluator is strictly trusting.

Proposition 3 (Comparative Statics with respect to f). If q ∈ [1/2, 9/10], the reporter's

incentive to misreport (that is, the expected gain from misreporting with respect to reporting

truthfully) is lowest when f = 1.

Let us discuss the intuition behind Proposition 3 and, more generally, behind the ef-

fect of changes in evaluator beliefs on reporters' incentives. The evaluator's belief about

the reporter's honesty only a�ects pBb and pBo and, thus, the expected assessment from

misreporting. A larger f makes a Blue report more informative and thus, it brings both

possible assessments following a Blue report further from 1/2, the prior belief that the signal

is informative. On one hand, this increases the assessment when the core is blue and the

report is accurate, implying that the gain from misreporting, pBb − pOb, increases with f .

On the other, it decreases the assessment when the core is orange and the report is inaccu-

rate, implying that also the loss from misreporting, pOo − pBo, increases with f . The loss

from misreporting increases faster in f than the gain, which suggests that the net gain from

misreporting decreases steadily in f and reaches a minimum at f = 1. However, when the

reporter considers the expected gain from misreporting, she weighs gains and losses by their

probability, qO and 1− qO, respectively. Thus, the speed at which expected gains and losses

from misreporting increase with f , also depend on qO, and thus, on q. For small values of q,

expected losses indeed grow faster than expected gains, making ∆EU(q, f) strictly decreasing

in f . Above a �rst threshold for the value of q, ∆EU(q, f) becomes concave in f , but the

loss from misreporting grows su�ciently fast for f near 1, that ∆EU(q, f) is still minimized

at f = 1. Above a second threshold, q = 9/10, ∆EU(q, f), still concave in f , is no longer

minimized at f = 1, but at f = 0. A third threshold for q, makes ∆EU(q, f) a strictly

increasing function of f , since after weighting by (a very large) qO, gains from misreporting

grow faster with f than losses.17

17We give exact values for all mentioned thresholds in the proof provided in Supplementary Appendix C.

32



A.4 Equilibrium Analysis

The analysis of the reporter's best reply hints at the structure of the equilibria. If the

common prior belief about the state of the world is such that the reporter's best reply to an

evaluator with perfectly trusting beliefs is to report truthfully, then such behavior can be

sustained in equilibrium. Otherwise, only misreporting can be sustained in equilibrium.18

Proposition 4 (Equilibria). When the prior belief about the state is mildly unbalanced,

q ∈ [1/2, 3/4], there are three Bayesian Nash equilibria: (i) a separating equilibrium in which

the reporter reports truthfully, (ii) a pooling equilibrium in which the reporter misreports,

and (iii) a hybrid mixed-strategy equilibrium (MSE) in which the reporter reports truthfully

with probability:

f ∗ (q) =
8q − 4

4q − 1
(4)

and misreports with complementary probability, 1 − f ∗. When the prior belief is strongly

unbalanced, q ∈ [3/4, 1] there is only a pooling equilibrium in which the reporter misreports.

Figure 4 illustrates the intuition behind Proposition 4. For mildly unbalanced prior

probabilities of the state, q ∈ [1/2, 3/4], the thick dashed line corresponds to the inverse

of equation 4, and thus represents the hybrid mixed strategy equilibrium of the game: the

belief, f , that for a given prior, q, makes the reporter exactly indi�erent between misre-

porting and truth-telling. The arrows indicate that this MSE is unstable. If the evaluator's

belief about the reporter's truthfulness is slightly larger than f ∗(q) the reporter is better o�

reporting truthfully. Thus, points to the right and below the dashed curve constitute the

basin of attraction of the separating equilibrium. If, instead, the evaluator's belief about the

reporter's truthfulness is smaller than f ∗(q), the reporter is better o� misreporting. Thus,

points to the left and above the dashed curve constitute the basin of attraction of the pooling

equilibrium. For strongly unbalanced priors, q ∈ [3/4, 1], only the pooling equilibrium exists

and all evaluator beliefs lie in the basin of attraction of this equilibrium.

Figure 4 also shows that as f decreases, the set of priors for which the reporter prefers

to misreport increases. Intuitively this happens because, when the evaluator expects the

reporter to be more likely to misreport, report R = B contains less information about S,

so that the evaluator becomes less able to make inference about u, the reporter's type. The

assessment after report R = B is thus dampened towards 1/2, the prior probability that

18See also Ottaviani and Sørensen (2001) Lemma 1. We use Harsanyi's Bayesian Nash equilibrium notion
since the choices made by the reporter and the evaluator are strategically simultaneous. The reason is that
the evaluator observes only the report but not the reporter's strategy, even though the reporter's choice of
a report precedes the evaluator's choice of an assessment.
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Figure 4: Equilibrium Set and Basin of Attraction.

the signal is informative. This in turn reduces the potential loss from misreporting, which

accrues if the state is o. Thus, misreporting may prove pro�table even when state o has a

high probability (low values of q).
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Appendix B: Generalized Beta-Noisy Bernoulli Model

The classic Bernoulli-Beta model�generalized in this appendix�characterizes the evolution

of the belief that a (possibly biased) coin, which, when tossed, gives Tails with frequency f

and Heads with complementary frequency. Suppose that the prior of f is Beta distributed

with parameters α and β. After observing a toss of the coin, the posterior of f is still Beta

distributed, with parameters α′ = α+ 1 and β′ = β if Tails is observed and with parameters

α′ = α and β′ = β + 1 if Heads is observed. Thus, the Beta distribution is a conjugate prior

with respect to Bernoulli-trial learning.

In the application we consider in this paper, the fraction of truthful reporters, f , is

an unknown parameter. Each period of the experiment in which evaluators and reporters

interact corresponds to a trial giving the evaluator the opportunity to learn about f . The

information received by evaluators at the end of each period's trial, however, does not exactly

correspond to the observation whether the reporter drawn from the population is truthful

or not. The feedback evaluators receive consists, instead, of a triple, comprising the Report,

the observed core, and the true informativeness of the urn from which the ball was drawn,

(R, c, u).

As presented in Table 8, all feedback triples with R = O perfectly reveal that the reporter

is truthful, whereas the feedback triple involving an informative urn, an orange core, and

a Blue report, (B, o, I), is a perfect signal of a misreporting reporter. These signals are,

thus, equivalent to observing Heads or Tails in a Bernoulli trial. However, triples involving a

Blue report and an uninformative urn, are imprecise: when the urn is uninformative, a Blue

report may originate from a truthful or a misreporting reporter, regardless of the color of the

core. The conditional probabilities of these realizations depend on the fraction of truthful

reporters, so that these muddy signals contain some information.

Below we generalize the basic Beta learning model to allow for learning from Bernoulli

trials with imprecise signals of trial outcomes. As we show, the generalized Beta distribution

introduced by Exton (1976) is a conjugate prior with respect to noisy Bernoulli sampling

(Proposition 5). We then compute the expected value of a class of functions of random vari-

ables with Exton generalized Beta distribution (Proposition 6). To the best of our knowledge,

our characterization of this conjugate model is novel to the literature and constitutes an ad-

ditional, free-standing, contribution of our paper. The paper put this model to work to

program learning by computerized evaluators; this model can be applied more generally to

model learning about a �xed frequency in other settings involving imperfect signals. This

model also proves useful as a benchmark for our analysis of the learning behavior of human

subjects.
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Noisy Bernoulli Experiment. The underlying parameter is the unknown probability

θ ∈ (0, 1) that a Bernoulli trial gives i = 1. A noisy signal j ∈ {0, . . . , J} about the outcome

of the Bernoulli trial i ∈ {0, 1} is observed, rather than the outcome of the underlying

Bernoulli trial. Realization j of this noisy Bernoulli experiment has conditional probability

πj|1 when the outcome of the trial is i = 1, and πj|0 when the outcome of the trial is i = 0,

where π0|1 = πJ |0 = 0 capture the possibility that signal realizations j = 0 and j = J

perfectly reveal the outcome of the trial.19

Noisy Bernoulli sampling consists of K independent repetitions of this noisy Bernoulli

experiment, where σj denotes the number of times signal j is realized.

Exton Generalized Beta. The Exton Generalized Beta probability density function of a

random variable 0 ≤ x ≤ 1 is given by

g (x; v1, v2, d1, . . . , dH , δ1, . . . , δH) =
xv1−1 (1− x)v2−1

B (v1, v2)
×

(1− δ1x)d1−1 . . . (1− δHx)dH−1

F
(H)
D (v1; 1− d1, . . . , 1− dH ; v1 + v2; δ1, . . . , δH)

, (5)

with v1, v2 > 0, where

F
(H)
D (a;µ1, . . . , µH ; c; γ1, . . . , γH) =

∞∑
i1,...,iH=0

(a)i1+...+iH (µ1)i1 · · · (µH)iH
(c)i1+...+iH

γi11
i1!
· · · γ

iH
H

iH !

is the fourth Lauricella function with H ∈ N and positive real parts of a and c−a (v1 and v2

in the Exton generalized Beta), the notation (·)h denotes the Pochhammer symbol, de�ning

the function

(b)h =

 1 if h = 0

b (b+ 1) . . . (b+ h− 1) if h > 0,

and

B (v1, v2) =
Γ (v1) Γ (v2)

Γ (v1 + v2)

is the Beta function with v1, v2 ∈ Z+, with

Γ(ν) =

∫ ∞
0

tν−1e−tdt

19If, in addition, π0|0 = 0 or πJ|1 = 0 no such perfectly revealing outcomes are possible. Also, note that
in the degenerate case with π0|0 = πJ|1 = 1 we are back to the original Bernoulli trial. The special case with
J = 2 corresponds to Warner's (1965) randomized response model. See also Winkler and Franklin (1979).
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denoting the Gamma function.

Proposition 5 (Conjugation). The Exton Generalized Beta distribution is conjugate with

respect to noisy Bernoulli sampling.

Proof. With noisy Bernoulli sampling, the probability of observing signal j conditional on θ

is Pr (j| θ) = θπj|1 + (1− θ) πj|0. Knowing that j = 0 and j = J are precise signals of i = 0

and i = 1, respectively, we have

Pr(j = 0| θ) = (1− θ) π0|0

Pr(j = 1| θ) = θπ1|1 + (1− θ) π1|0
...

Pr(j = J | θ) = θπJ |1

and, thus, the likelihood of the sample with signal frequencies σ0, σ1, . . . , σJ , is given by

l (σ0, . . . , σJ | θ) =
[
πσ00|0 × . . . π

σJ−1

J−1|0 × π
σJ
J |1

]
θσJ (1− θ)σ0

J−1∏
j=1

[
1−

(
1−

πj|1
πj|0

)
θ

]σj
. (6)

Notice that it is not necessary that there be precise signals (j = 0 and j = J), since all

ensuing steps will follow through if σ0 = σJ = 0 always.

Bayesian updating from a prior g (θ; ·), after observing sample σ0, σ1, . . . , σJ , yields pos-

terior

g (θ; ·|σ0, . . . , σJ) =
g (θ; ·) l (σ0, . . . , σJ | θ)∫
t
g (t; ·) l (σ0, . . . , σJ | t) dt

.

Assume that θ has an Exton generalized Beta prior, g (θ; v1, v2, d1, . . . , dH , δ1, . . . , δH),

with H ≥ J , and parameters δh = 1 − πh|1
πh|0

for h = 1, . . . , J − 1.20 The numerator of the

above expression is given by

20This is without loss of generality, since it su�ces to set dh = 1 to obtain a prior with less than J + 1
factors, or whose original parameters, δh, di�er from 1 − πh|1

πh|0
for all h. As is clear from the ensuing steps,

factors are added via the likelihood, as signals are sampled.
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g (θ; v1, v2, d1, . . . , dH , δ1, . . . , δH) l (σ0, . . . , σJ | θ)

=

[
θv1−1 (1− θ)v2−1∏H

h=1 (1− δhθ)dh−1
] [(

πσ00|0 . . . π
σJ−1

J−1|0π
σJ
J |1

)
θσJ (1− θ)σ0

∏J−1
j=1 (1− δjθ)σj

]
B (v1, v2)F

(H)
D (v1; 1− d1, . . . , 1− dH ; v1 + v2; δ1, . . . , δH)

=

(
πσ00|0 . . . π

σJ−1

J−1|0π
σJ
J |1

)
B (v1, v2)F

(H)
D (v1; 1− d1, . . . , 1− dH ; v1 + v2; δ1, . . . , δH)

×[
θv1+σJ−1 (1− θ)v2+σ0−1

J−1∏
j=1

(1− δjθ)dj+σj−1
H∏
h=J

(1− δhθ)dh−1

]

The denominator being the integral on θ of the above expression, all terms independent of θ

(�rst factor in the �nal expression) exactly match in numerator and denominator and, thus,

cancel out to give

g (θ; v1, v2, d1, . . . , dH , δ1, . . . , δH |σ0, . . . , σJ)

=
θv1+σJ−1 (1− θ)v2+σ0−1∏J−1

j=1 (1− δjθ)dj+σj−1∏H
h=J (1− δhθ)dh−1∫ 1

0
tv1+σJ−1 (1− t)v2+σ0−1∏J−1

j=1 (1− δjt)dj+σj−1∏H
h=J (1− δht)dh−1 dt

= g (θ; v1 + σJ , v2 + σ0, d1 + σ1, . . . , dJ−1 + σJ−1, dJ , . . . , dH , δ1, . . . , δH) ,

where the last expression is again an Exton-generalized Beta function with parameters up-

dated by the sample, and the last equality follows from the integral representation of the

fourth Lauricella function, given below (Lauricella 1893: p.149):

F
(H)
D (a;µ1, . . . , µH ; c; γ1, . . . , γH) = 1

B(a,c−a)

∫ 1

0

ta−1 (1− t)c−a−1
H∏
h=1

(1− γht)−µh dt. (7)

Proposition 6 (Expectation). If the random variable x follows an Exton Generalized Beta

distribution with v1, v2 ∈ Z+, the expectation of the function

ϕ (x; k, ζ0, ζ1, . . . , ζS,1 , . . . , zS) = ζ0x
k

S∏
s=1

(1− ζsx)zs−1 (8)

is

E [ϕ (x)] = ζ0
Γ(v1+v2)Γ(v1+k)
Γ(v1)Γ(v1+v2+k)

F
(H+S)
D (v1+k,1−d1,...,1−dH ,1−z1,...,1−zS ;v1+v2+k;δ1,...,δH ,ζ1,...,ζH)

F
(H)
D (v1,1−d1,...,1−dH ;v1+v2;δ1,...,δH)

. (9)
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Proof. Using (5) and (8) and collecting terms, we have

E [ϕ (x)] =

∫ 1

0

ϕ (x) g (x) dx

=

∫ 1

0

ζ0x
v1−1+k (1− x)v2−1∏H

h=1 (1− δhx)dh−1∏S
s=1 (1− ζsx)zs−1

B (v1, v2)F
(H)
D (v1, 1− d1, . . . , 1− dH ; v1 + v2; δ1, . . . , δH)

dx

=
ζ0

B (v1, v2)

∫ 1

0
xv1+k−1 (1− x)v2−1∏H

h=1 (1− δhx)dh−1∏S
s=1 (1− ζsx)zs−1 dx

F
(H)
D (v1, 1− d1, . . . , 1− dH ; v1 + v2; δ1, . . . , δH)

= ζ0
Γ(v1+v2)Γ(v1+k)
Γ(v1)Γ(v1+v2+k)

∫ 1

0
xv1+k−1 (1− x)v2−1∏H

h=1 (1− δhx)dh−1∏S
s=1 (1− ζsx)zs−1 dx

B (v1 + k, v2)F
(H)
D (v1, 1− d1, . . . , 1− dH ; v1 + v2; δ1, . . . , δH)

where the last equality follows from re-writing the Beta function as

1

B (v1, v2)
=

Γ (v1 + v2)

Γ (v1) Γ (v2)

=
Γ (v1 + v2)

Γ (v1) Γ (v2)

Γ (v1 + k) Γ (v2)

Γ (v1 + v2 + k)

Γ (v1 + v2 + k)

Γ (v1 + k) Γ (v2)

=
Γ (v1 + v2)

Γ (v1) Γ (v2)

Γ (v1 + k) Γ (v2)

Γ (v1 + v2 + k)

1

B (v1 + k, v2)

=
Γ (v1 + v2) Γ (v1 + k)

Γ (v1) Γ (v1 + v2 + k)

1

B (v1 + k, v2)
.

Using once more the integral representation of the Lauricella function given in 7, we replace

the numerator and conclude that

E [ϕ (x)] = ζ0
Γ(v1+v2)Γ(v1+k)
Γ(v1)Γ(v1+v2+k)

F
(H+S)
D (v1+k,1−d1,...,1−dH ,1−z1,...,1−zS ;v1+v2+k;δ1,...,δH ,ζ1,...,ζH)

F
(H)
D (v1,1−d1,...,1−dH ;v1+v2;δ1,...,δH)

.

We conclude this appendix by applying these results to the learning process used for com-

puterized evaluators in treatment CL, where the signals and their probabilities conditional

on the unknown parameter f , are given in Table 8. Let truth-telling correspond to outcome

i = 1 in the noisy Bernoulli trial, and the three possible signals, j = 0, 1, 2, be the negative,

the muddy, and the positive signal, respectively. Their likelihoods according to Table 8 are

Pr(j = 0| f) = (1− f)
1− q

2

Pr(j = 1| f) = f

(
1

4

)
+ (1− f)

(
1

2

)
Pr(j = 2| f) = f

3− 2q

4
,
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so that δ1 = 1 − 1/4
1/2

= 1/2. The uniform prior used in our application, corresponds to

parameters v1 = v2 = d1 = 1, and either H = 1 or dh = 1 for all h, of the Exton generalized

Beta function. Proposition 5 tells us that after a sample of n negative signals, p positive

signals, and m muddy signals, uncertainty about f is given by the density

g (f ; p+ 1, n+ 1,m+ 1, 1/2) =
fp (1− f)n

(
1− 1

2
f
)m

B (p+ 1, n+ 1)F
(1)
D

(
p+ 1;−m; p+ n+ 2; 1

2

)
=

fp (1− f)n
(
1− 1

2
f
)m∫ 1

0
xp (1− x)n

(
1− 1

2
x
)m

dx
.

Recall that the assessment of an evaluator who receives a Blue report and observes either

an orange or a blue core, is a function of f�either pBb(f) or pBo(f). Thus, the expected

assessments given by an evaluator whose experience so far is the sample (n,m, p) are respec-

tively E [pBb(f)] and E [pBo(f)], under the Exton generalized Beta density with parameters

v1 = p+ 1, v2 = n+ 1, d1 = m+ 1, and δ1 = 1/2. Recall that

pBb(f) =
1

3
2

+ (1− f) 1
2

=
1

2

(
1− 1

4
f

)−1

, and

pBo(f) =
(1− f)

1
2

+ (1− f) 3
2

=
1

2
(1− f)

(
1− 3

4
f

)−1

,

which means these functions satisfy the assumptions of Proposition 6.
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Supplementary Appendices

Supplementary Appendix C: Proofs

Proof of Proposition 1. The proposition follows directly from equation 3. We give further

details of the derivation of this equation. First, recall that the reporter's strategies di�er

only if the signal is O, in which case the expected payo�s from misreporting or truth-telling,

are, respectively

EU(M) = (1− qO) pBo + qOpBb, and

EU(T ) = (1− qO) pOo + qOpOb,

where, by Bayes' rule

qO = Pr (c = b|S = O) = Pr(S=O|c=b)q
Pr(S=O|c=b)q+Pr(S=O|c=o)(1−q) =

1
4
q

1
4
q+ 3

4
(1−q) .

Recall that pOo = 2/3 and pOb = 0, independent of the evaluator's beliefs, G(f). In the case

of a Blue report, the evaluator assessments are derived from

pRc = Pr (u = I|R, c, f) =
1
2

Pr(R|c,u=I,f)
1
2

[Pr(R|c,u=I,f)+Pr(R|c,u=U,f)]
.

with

Pr (R|c, u, f)

= Pr (R|S = O, c, u, f) Pr (S = O|c, u, f) + Pr (R|S = B, c, u, f) Pr (S = B|c, u, f)

= Pr (R|S = O, f) Pr (S = O|c, u) + Pr (R|S = B, f) Pr (S = B|c, u) ,

where in the last equality we used the fact that the reporter does not know the realizations of

c and u when sending the report and that the joint distribution of signal, state, and reporter

type does not depend on the evaluator's beliefs.

Given the evaluator's beliefs and the reporter's available strategies, we know that Pr(R =

B|S = B, f) = 1, and Pr (R = B|S = O, f) = 1− f , and therefore

Pr (R = B|c = o, u = I, f) = 1− f,

Pr (R = B|c = b, u = I, f) = 1,

Pr (R = B|c = o, u = U, f) = Pr (R = B|c = b, u = U, f) = 1− 1

2
f,
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so that the evaluator's assessments after a Blue report are

pBo = (1−f)
1
2

+ 3
2

(1−f)

pBb = 1
3
2

+ 1
2

(1−f)
.

Using the expressions for pOo, pOb, pBo, pBb, and qO we obtain the gain from misreporting

conditional on observing an Orange signal, ∆EU (q, f), reported in equation (3). Ex-ante,

before knowing the received signal, the reporter's expected gain from misreporting equals

Pr(S = O)∆EU (q, f), which preserves its sign.

If the evaluator holds distributional beliefs, G(f), with density g(f), the conditional

expected gain from misreporting becomes

∆̃EU (q,G(f)) =

∫ 1

0

∆EU (q, f) g(f)df ;

the reporter should misreport only if this expression is positive. If the evaluator holds point

beliefs with G(f) degenerate, the reporter should misreport if Pr (S = O) ∆EU (q, f) > 0,

i.e.,
3
4
(1− q)

(
(1−f)

1
2

+(1−f) 3
2

− 2
3

)
+ 1

4
q
(

1
3
2

+(1−f) 1
2

)
> 0,

which boils down to q > 4−f
4(2−f)

.

Proof of Proposition 2. Consider ∆EU from equation (3) and recall that the reporter's

ex-ante expected gain from misreporting is

Pr (S = O) ∆EU (q, f) =
[

1
4
q + 3

4
(1− q)

] [ 3
4

(1−q)
1
4
q+ 3

4
(1−q)

(
(1−f)

1
2

+(1−f) 3
2

− 2

3

)
+

1
4
q

1
4
q+ 3

4
(1−q)

(
1

3
2

+(1−f) 1
2

)]
=

3

4
(1− q)

(
(1−f)

1
2

+(1−f) 3
2

− 2

3

)
+

1

4
q
(

1
3
2

+(1−f) 1
2

)
.

The derivative ∂[Pr(S=O)∆EU (q,f)]
∂q

= 4−2f
(4−f)(4−3f)

> 0 given that 4 − 2f , 4 − f , and 4 − 3f are

positive for all f ∈ [0, 1].

Proof of Proposition 3. Consider ∆EU from equation (3). We have:

∂ [Pr(S = O)∆EU(q, f)]

∂f
=

(24q − 6)f 2 + (−96q + 48)f + 128q − 96

(3f 2 − 16f + 16)2
.

The denominator is always positive. Thus, the derivative is negative if and only if the

numerator is negative. The numerator is negative if and only if
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q <
3f 2 − 24f + 48

12f 2 − 48f + 64
.

This means that, if q ≤ 3
4
, the derivative is negative for any f ∈ [0, 1], and hence, it follows

that the expected gain from misreporting is minimized at f = 1. When q > 3
4
, the numerator

is negative if and only if

f >
q − (1− q)− 2

√
1
3
q(1− q)

3
4
q − 1

4
(1− q)

= f(q).

As long as q < 27
28
, there is f ∈ [0, 1] such that this condition is satis�ed. Thus, for prior

beliefs q ∈
[

3
4
, 27

28

]
, Pr (S = O) ∆EU (q, f) is a concave function of f , minimized either at

f = 0 or f = 1. It is easy to see that, as long as q < 9
10
, Pr(S = O)∆EU(q, 1) = 8q−6

9−6q
<

Pr(S = O)∆EU(q, 0) = 16q−8
48−32q

, thus completing the proof of the statement.

Additionally, notice that for q ∈
[

9
10
, 27

28

]
, the concave incentives for misreporting are

minimized when f = 0. Moreover, when q > 27
28
, expected gains from misreporting are a

strictly increasing function of f , immediately implying that they are minimized at f = 0

(and maximized at f = 1).

Proof of Proposition 4. First consider a strongly unbalanced prior belief about the

state, q ∈ (3/4, 1], and notice that the condition for the reporter to prefer misreporting,

q > 4−f
4(2−f)

, is satis�ed for all values of f : the right-hand side is strictly increasing in f , and

equals 3/4 when f = 1. This means that there can only be equilibria where the reporter

misreports. Since the condition is also satis�ed when f = 0�when the evaluator believes

the reporter misreports for sure�misreporting and misreporting beliefs indeed constitute

a perfect Bayesian Nash equilibrium. Hence, with a strongly unbalanced prior, the unique

equilibrium of the game is a pooling equilibrium.

Now consider a mildly unbalanced prior, q, and suppose the evaluator holds beliefs

f ∗(q) = 8q−4
4q−1

. Simple transformations give a simpli�ed expression for the reporter's expected

gain from misreporting,

Pr (S = O) ∆EU (q, f) =
4q (2− f) + (f − 4)

2 (4− f) (4− 3f)
,

whose denominator is always positive. Replacing f = 8q−4
4q−1

, the numerator of the above

expression equals 0, meaning that the reporter is indi�erent between misreporting and truth-

telling. Hence, the evaluator's beliefs that the reporter picks a mixed strategy of truth-telling

with probability 8q−4
4q−1

can indeed be sustained with reporter's best-replying behavior for those
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beliefs. This shows that the MSE exists.

If the evaluator holds beliefs f > 8q−4
4q−1

, ∆EU < 0, meaning that the reporter prefers

to be truthful. Therefore, the only belief f > 8q−4
4q−1

that can be sustained by the reporter's

behavior, is f = 1, where the reporter is truthful and the evaluator believes this: a separating

equilibrium exists.

If the evaluator holds beliefs f < 8q−4
4q−1

, ∆EU > 0, meaning that the reporter prefers

misreporting. Therefore, the only belief f < 8q−4
4q−1

that can be sustained by the reporter's

best-replying behavior is f = 0, where the reporter misreports and the evaluator believes so:

a pooling equilibrium exists.
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Supplementary Appendix D: Summary Statistics By Experience

q = 0.6 q = 0.8

1st Block 2nd Block Theory 1st Block 2nd Block Theory

HF 0.53 0.49 [0,1] 0.44 0.37 0

(752) (745) (736) (736)

CT 0.59 0.65 1 0.43 0.34 0

(752) (752) (752) (752)

CU 0.52 0.44 1 0.38 0.35 0

(725) (752) (752) (752)

CL 0.54 0.47 [0,1] 0.41 0.36 0

(768) (768) (768) (768)

Table 15: Fraction of periods the reporters choose the truthful plan of action, by treatment and experience.
The number of observations is in parentheses. Each reporter makes 16 decisions in each treatment and block.
There are 46 reporters in HF; 47 in CU and CT; and 48 in CL. In HF, there is one additional reporter making
16 decisions in the 1st Block with q = 0.6 and 9 decisions in the 1st Block with q = 0.8.

Assessments Empirical Frequency Theory

1st Block 2nd Block 1st Block 2nd Block

Blue Report & Blue Core 0.60 0.59 0.56 0.55 [0.50, 0.67]

(385) (383) (385) (383)

Blue Report & Orange Core 0.30 0.40 0.37 0.37 [0, 0.50]

(196) (194) (196) (194)

Orange Report & Blue Core 0.23 0.01 0.00 0.00 0.00

(60) (54) (60) (54)

Orange Report & Orange Core 0.66 0.65 0.64 0.68 0.67

(111) (105) (111) (105)

Table 16: Median assessment by the evaluators, by observed Report-Core and experience, q = 0.6. The
number of observations is in parentheses. There are 47 the evaluators, each making 16 assessments in each
treatment and each block. Because of missing observations by the corresponding reporter, there are 7 missing
observations for the 1st Block with q = 0.8 and 16 missing observations for the 2nd Block with either q.
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Assessments Empirical Frequency Theory

1st Block 2nd Block 1st Block 2nd Block

Blue Report & Blue Core 0.60 0.55 0.59 0.56 [0.50, 0.67]

(536) (522) (536) (522)

Blue Report & Orange Core 0.36 0.30 0.37 0.46 [0, 0.50]

(113) (117) (113) (117)

Orange Report & Blue Core 0.10 0.01 0.10 0.01 0

(56) (59) (56) (59)

Orange Report & Orange Core 0.48 0.66 0.65 0.89 0.67

(40) (38) (40) (38)

Table 17: Median assessment by the evaluators, by observed Report-Core and experience, q = 0.8. The
number of observations is in parentheses. There are 47 the evaluators, each making 16 assessments in each
treatment and each block. Because of missing observations by the corresponding reporter, there are 7 missing
observations for the 1st Block with q = 0.8 and 16 missing observations for the 2nd Block with either q.
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Supplementary Appendix E: Experimental Instructions

Experimental instructions were delivered in print and using a video of power point slides

with explanations of the situation and decisions to be made. The videos for each game can

be found at the following web addresses:

• For game CT, http://bocconicohortstudy.org/t11a.mp4

• For game CU, http://bocconicohortstudy.org/t11u.mp4

• For game CL, http://bocconicohortstudy.org/t22.mp4

• For game HF, http://bocconicohortstudy.org/t33.mp4

Here we reproduce the words and some of the �gures contained in the slides handed out to

the subjects. Information outside boxes is relevant for all games; information inside boxes

is relevant for a speci�c game or set of games only, as indicated in the title of the box.

Some wording is slightly di�erent between games CT, CU, and CL, on one side, and game

HF on the other. These alternate wordings are indicated inside square brackets, with the

wording used in game HF indicated in italics. We use square brackets and small caps to

insert comments about the graphical interface of the delivered instructions.

An Experiment With Balls. Instructions

Welcome

• In this experiment your earnings will depend on your decisions, so that di�erent par-

ticipants may earn di�erent amounts

• Your earnings will be paid in cash at the end of the session in a separate room to

preserve the con�dentiality of your scores

• Please be aware that your participation is voluntary and can be withdrawn at any time

without giving any reasons, but in that case your earnings will be nil

Informed Consent Form

• Please read carefully the Information for Data Subjects and Consent Request docu-

ment handed out along with these instructions. Please tick, date, and sign the Informed

Consent Form at the end of that document

• The data will be collected in an anonymous way by associating a code with your

identity

• The users of the data will associate the data with the code, but they will never be able

to associate the data with your individual identities
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• The anonymized data will be stored and analyzed by the Principal Investigator for the

purpose of a research project on reporting and evaluating

• The anonymized data will be kept inde�nitely by the Principal Investigator and will

be made available to other researchers if and when the project leads to a publication

in a scienti�c journal

Practicalities

• Please remember to turn o� your cell phones

• Once the experiment starts, please do not talk or in any way communicate with other

participants

• If you have any question or problem at any point, please raise your hand

• Participants intentionally violating rules may be asked to leave the experiment and

may not be paid

• You can contact Marco Ottaviani (marco.ottaviani@unibocconi.it), the project's

Principal Investigator, to ask for corrections, updates, or cancellation of your data at

any time

• In case of ethical concerns related to the experiment, you can contact Bocconi's Ethical

Committee (comitatoeticoricerca@unibocconi.it)

The Experiment

• This experiment consists of four (4) blocks of periods

• Each block consists of sixteen (16) periods

Games CT, CU, and CL only

• In each period you will play the role of reporter and you will interact with a

computerized evaluator

Game HF only

• In each period you interact with another participant

• Half of you are assigned the role of reporter, the other half the role of evaluator

• You maintain the role assigned in the �rst period for the entire experiment

[Screenshots are shown to illustrate the initial message which assigns
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Figure 5: Game CL only: diagram to illustrate reporters' matching with computerized evaluators.

the role of reporter or evaluator to each subject]

• In each period a reporter is randomly paired with an evaluator

• If you are a reporter, in each period you are equally likely to be paired with any

of the evaluators, regardless of the evaluator you were paired with in the previous

period

• You will never know the identity of the evaluators you are paired with

• If you are an evaluator, in each period the same mechanism randomly pairs you

with a reporter, whose identity you will never know

Game CL only

[Accompanied by the diagram in figure 5.]

Reporters & Computerized Evaluators

The number of computerized evaluators is the same as the number of reporters, which

in turn is equal to the number of experimental subjects in this room

Random Pairing

In each period you will be randomly paired with one of the computerized evaluators

Regardless of the computerized evaluator you were paired with in the previous period,

in each period you are equally likely to be paired with any of the computerized evaluators

Balls

• In each period the software draws a ball

• Each ball is made of two parts: a crystal inner core and an opaque outer shell

• The inner core is either blue or orange; similarly, the outer shell that covers the core

is either blue or orange

52



Figure 6: Informative (left) and uninformative (right) urn used as an example in the experimental instruc-
tions.

• Overall, there are four kinds of balls:

1. Balls with blue core and blue shell

2. Balls with blue core and orange shell

3. Balls with orange core and blue shell

4. Balls with orange core and orange shell

Urns

• The ball is drawn from one of two urns [Figure 6 is shown]

• The number of balls in each of the two urns is always equal to 10

• In each urn the number of balls with a blue core is equal to Q

• At the beginning of a block of periods you are told the number of balls with a blue

core, Q, contained in each urn in every period of that block; the remaining 10 - Q balls

in each urn have an orange core

• In the example above, in both urns Q=2 balls have a blue core, so that the remaining

10 - Q=8 balls have an orange core

The Informative Urn

In the informative urn, the core of each and every ball is covered by a shell of the same color

EXAMPLE [The left panel of Figure 6 is shown]: The informative urn contains:

• Two (Q=2) balls with a blue core and a blue shell

• Eight (10 - Q=8) balls with an orange core and an orange shell

The Uninformative Urn

In the uninformative urn, for half of the balls the core is covered by a shell of the same color,

and for the remaining half of the balls the core is covered by a shell of the other color

EXAMPLE [The right panel of Figure 6 is shown]
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• Out of the two (Q=2) balls with blue core, one (2/2=1) is covered by an orange shell

and one by a blue shell

• Out of the eight (10 - Q=8) balls with orange core, four (8/2=4) are covered by an

orange shell and four by a blue shell

Notice that in the uninformative urn �ve (5) balls always have a blue shell and �ve (5) balls

always have an orange shell

Draw

• At the beginning of each period, the computer will simulate the toss of a fair coin to

determine from which of the two urns the ball is drawn

• If the coin lands Heads, the ball will be drawn from the informative urn

• If the coin lands Tails, the ball will be drawn from the uninformative urn

• When the ball is drawn, neither you (the reporter) nor the [computerized] evaluator

know the outcome of the coin toss

Thus nobody knows from which of the two urns the ball is drawn

[Your Task] [Task of the Reporter ]

[Your task as reporter] [The task of the reporter ] is to make a report about the

color of the shell

• The report has to be made through a plan to which [you] [the reporter ] must commit

before seeing the color of the shell

You [The reporter ] must choose one of the following two plans:

(1) If I see a BLUE shell, I will report: �The shell is BLUE�. If I see an ORANGE

shell, I will report: �The shell is ORANGE�.

(2) If I see a BLUE shell, I will report: �The shell is BLUE�. If I see an ORANGE

shell, I will report: �The shell is BLUE�.

EXAMPLE: [Caricature of a reporter who thinks the following sentence.]

If I see an ORANGE shell, I will report �The shell is BLUE�.

[Screenshots are given to illustrate how this choice can be made using the

computer interface of the experiment. See Figure 7.]

Implementation of Plan of Action
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Figure 7: The reporter chooses plan of action (2) (left), a ball is drawn that has an Orange shell, so the
reporter's report is Blue (right).

• After submitting the plan, [you] [the reporter ] see the color of the shell of the ball that

was actually drawn

• At this point, a report is automatically sent to the computerized evaluator according

to [the plan you have previously chosen] [the plan previously chosen by the reporter ]

• Recall that the report sent to the computerized evaluator is determined both by [your]

[the reporter's ] plan and by the color of the shell of the ball that was actually drawn

• Notice that the plan is made before [you] [the reporter ] see the actual color of the shell

EXAMPLE: If I see an ORANGE shell, I will report �The shell is BLUE�.

The following ball is drawn [Graphical display of a ball with an orange shell

and an orange core. The shell is then isolated for the reporter to see. A

dashed blue shell (indicating the report) is then sent to the evaluator.]

[Your goal as reporter] [The goal of the reporter ] is to be perceived as having

seen a ball drawn from the informative urn

[Screenshots are given to illustrate how the shell is shown to the reporter

and a report is automatically sent using the rule given by the reporter's

chosen plan of action. See Figure 7.]

Task of the [Computerized] Evaluator

The task of the [computerized] evaluator is to assess how likely it is that the ball

was drawn from the informative urn

The [computerized] evaluator makes the assessment after receiving two pieces of information:
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• The report sent by the reporter about the color of the shell

• The color of the core of the ball that has been drawn

Game CT only

• Throughout all the periods of this experiment, the computerized evaluator is pro-

grammed to believe that you always use plan (1)

� Thus, in each period, the evaluator you face believes that the color of the

shell you report is equal to the color of the shell you see

Game CU only

Throughout all the periods of this experiment, the computerized evaluator is programmed

to interpret the report based on the belief that:

• A fraction f of the reporters uses plan (1) and a fraction 1− f uses plan (2)

• All values of f between 0 and 1 are equally likely

This means, for example, that the computerized evaluator believes that the probability

that a fraction f = 2/10 of reporters use plan (1) is the same as the probability that

a fraction f = 9/10 of reporters use plan (1), and so on for all possible values of the

fraction f

Game CL only

• In order to interpret the report and assess whether the ball was drawn from the in-

formative urn, the computerized evaluator is programmed to believe that a fraction

f of the reporters uses plan (1) and a fraction 1− f uses plan (2)

• However, computerized evaluators do not know the value of f

Experience and Dynamics of Beliefs

Computerized evaluators accumulate experience across periods with the same

value of Q, so that their belief about f evolves depending on their experience

• In each period, the experience of each computerized evaluator consists of the out-

come of the interaction with the reporters with whom this computerized evaluator

was paired in all previous periods with the same value of Q

• In the �rst period of a block of periods with a value of Q that has never been
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encountered before, all evaluators believe that any value of f between 0 and 1 is

equally likely

• Thus, in the �rst period, the computerized evaluator believes, for example, that

the probability that a fraction f = 2/10 of reporters use plan (1) is the same as

the probability that a fraction f = 9/10 of reporters use plan (1), and so on for all

possible values of the fraction f

• Each computerized evaluator updates its belief about the fraction f on the basis of

the experience accumulated in each of the previous individual interactions with

reporters. This experience consists of:

� The reports received by that speci�c computerized evaluator

� The color of the cores observed by that speci�c computerized evaluator

� Whether each ball was drawn from the informative or the uninformative urn

This experience allows the computerized evaluator to make an inference

about the plan used by the reporters it encountered in all previous

periods

• Note that the �rst time a block of periods with a certain Q starts, learning from

experience starts anew

• The �memory� of the computerized evaluator is then reset to believe that all values

of f between 0 and 1 are equally likely

• However, if a block starts a second time with the same Q as in an earlier block,

the computerized evaluator carries over the experience from the earlier block with

that same Q

Task of the [Computerized] Evaluator, continued

• The assessment of the [computerized] evaluator takes the following form:

�Given the core that I see and the reported shell, how likely is it that the ball was

drawn from the informative urn? My assessment is P% =__%.�

• The number P is between 0 and 100

The goal of the [computerized] evaluator is to make an accurate assessment

EXAMPLE: The following ball is drawn [Graphical display of a ball with an or-

ange shell and an orange core. The core is separated from the shell. The

57



Figure 8: The evaluator is reminded that the report she/he will see is the choice of the reporter (up, left),
and is given the opportunity to make a choice after receiving the report and observing the core of the drawn
ball (up, right). The evaluator can make her/his choice using a slider (down, left), or by typing in a number
(down, right).

core is directly given to the evaluator to see. The shell is given to the

reporter who sends a dashed blue shell (report) to the evaluator. The

graphic evaluator ponders:] Given the core that I see and the reported shell, how

likely is it that the ball was drawn from the informative urn? My assessment is P% = __%.

Notice that the [computerized] evaluator sees [your] [the reporter's ] report, but sees neither

the reporter's plan nor the actual color of the shell

Game HF only

[Screenshots are given to illustrate the information the evaluator will

have at the time when she/he will make her/his choice. See Figure 8.]

[Your Payo�] [Payo� of the Reporter ]

• At the beginning of each block of periods [you] [the reporter ] receive a budget of 4
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euros

• In each period [you] [the reporter ] pay an operating fee of 25 euro cents and obtain a

payo� equal to P euro cents

• P% represents the [computerized] evaluator's assessment of the probability that the

ball was drawn from the informative urn

[A screenshot is shown to illustrate how feedback is given to the reporter

about her choice, her payoff, and the truth about the core of the drawn

ball and the urn informativeness. See Figure 9.]

Game HF only

Payo� of the Evaluator

The payo� structure of the evaluator is designed to give the evaluator an

incentive to make and report an accurate assessment of the probability that

the ball was drawn from the informative urn

• Depending on the evaluator's assessment, P%, the evaluator receives the following

numbers of lottery tickets:

� NI =
[
1− (1− P/100)2]× 10000 tickets that are marked by I and numbered

consecutively from 1 to NI

� NU =
[
1− (P/100)2] × 10000 tickets that are marked by U and numbered

consecutively from 1 to NU

• When the evaluator assesses P, the software displays the numbers NI and NU

corresponding to every value of P in a friendly format

• The payo� of the evaluator depends on the outcome of the lottery as follows:

i. Selection of the letter:

∗ If the ball was drawn from the informative urn, letter I is selected

∗ If the ball was drawn from the uninformative urn, letter U is selected

ii. Selection of the number: The software extracts a random number between 1

and 10000 (in each period all numbers are equally likely to be extracted and

extractions are independent across periods)

iii. If the evaluator owns the ticket with the selected letter and the selected num-

ber, the evaluator wins 75 euro cents; otherwise, the evaluator wins 0 euro

cents
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[Screenshots are given to show how the evaluator can make an assess-

ment using either the keyboard or the slider in the experiment's com-

puter interface. See Figure 8.]

Payo� of the Evaluator

• Suppose that the ball was actually drawn from the informative urn

• Suppose that the software randomly extracts number 5105

• Given that the evaluator owns the winning ticket (number I−5105), the evaluator

wins 75 cents!

• Note that if the number extracted had been greater than 5511, the evaluator would

have lost the lottery

[A screenshot is given with the evaluator's feedback on payoff. See Fig-

ure 9.]

Evaluator Feedback

Evaluator

At the end of each period, the evaluator receives the following feedback about the out-

come of that period:

• The urn (informative or uninformative) from which the ball was drawn

• The evaluator's own payo�

Recall that the evaluator sees neither the reporter's plan nor the color of the shell

[A screenshot is given to show the historical feedback given to evalua-

tors in between experimental periods. See Figure 10.]

[Your] [Reporter ] Feedback

At the end of each period, [you] [the reporter ] receive the following feedback about the

outcome of that period:

• The color of the core of the drawn ball

• [Your] [The reporter's ] own payo�

• The urn (informative or uninformative) from which the ball was drawn
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Figure 9: Feedback is given to the reporter(left) and to the evaluator (right) at the end of each period.

Figure 10: In between periods, the reporter (left) and the evaluator (right) are reminded of important
outcome variables for all past periods.

[A screenshot is shown illustrating the historical feedback given to the

reporter in between experimental periods. See Figure 10.]

Game CL only

Evaluator Feedback

Computerized Evaluator

At the end of each period, the computerized evaluator receives feedback about the urn

(informative or uninformative) from which the ball was actually drawn

Recall that the computerized evaluator sees neither your reporting plan nor the color of

the shell

Transition Across Periods & Blocks

• At the end of each period the ball is returned to the urn from which it was drawn
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• At the beginning of the following period a new coin �ip is simulated and a new ball is

drawn from the urn selected by the coin �ip

• Urn selections and ball draws are therefore independent across periods

• You are allowed to take notes on scrap paper throughout the experiment

• At the end of each block of periods you will have time to take notes about your

experience during that block

• You are advised to go over your notes whenever you happen to play again a block of

periods with the same number (Q) of balls with a blue core

Summary

At the beginning of each of the four (4) blocks of periods you are told the value of Q, the

number of balls with blue core out of the total ten (10) balls that are contained in each of

the two urns

For each of the sixteen (16) periods within each block, the timing is as follows: [see Figure

11.]
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(a) Games CT, CU, and CL. Additional text for CL in gray.

(b) Game HF.

Figure 11: Graphical summary of the experiment used in the experimental instructions.
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